Optimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received signal strength (RSS) measurements simulated using Wireless InSite (WI) software were considered in the test case study by comparing the results collected from WI with the present wireless simulated physical AP deployment of the targeted building - Computer Science Department at University of Baghdad. The performance evaluation of WOAIP shows an increase in terms of AP placement and optimization distinguished in order to increase the wireless coverage ratio to 92.93% compared to 58.5% of present AP coverage (or 24.5% coverage enhancement on average).
The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm) and different weight percentage (0.05-0.1-0.5-1) wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro) alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS), wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of
... Show MoreThe research dealt with the effectiveness of prediction and foresight in design as a phenomenon that plays a role in the recipient's engagement with the design, as it shows the interaction between the recipient and the interior space. The designer is keen to diversify his formal vocabulary in a way that secures visual values that call for aesthetic integration, as well as securing mental and kinetic behavioral understanding in the interior space.
As the designer deals with a three-dimensional space that carries many visual scenes, the designer should not leave anything from it without standing on it with study and investigation, and puts the user as a basic goal as he provides interpretive data through prediction and foresight that le
This study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t
... Show MoreThe current research aims to build a training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students. To achieve the objectives of the research, the following hypothesis was formulated:
There is no statistically significant difference at (0.05) level of significance between the average grades of the students participating in the training program according to the knowledge economy and the average grades of the students who did not participate in the training program in the test of productive thinking. The study sample consisted of (288) second intermediate grade students divided into (152) for the control group
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More