Tourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective data mining technology. Besides that, this paper implementation of 4 data mining classification techniques was experimented for extracting important insights from the tourism data set. The aims were to find out the best performing algorithm among the compared on the results to improve the business opportunities in the fields related to tourism. The results of the 4 classifiers correctly classifier the attributes were JRIP (84.09%), Random Tree (83.66%), J48 (85.50%), and REP Tree (82.47%). All the results will be analyzed and discussed in this paper.
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThis study analyzes how to make use of the resources in the marshlands of Iraq and how to utilize them, especially after the water returns to these areas and they are revitalized. We take an example of AL- Saheen Marsh and plan an ideal tourist resort there. This example can further expand to include other parts of the marshlands. The resort will utilize the local environment and tourist characteristics as it will have a feel and architectural resemblance to the houses and buildings that are currently built there. In addition the transportation methods will be the same as those used by the locals. Yet the resort will still posses all the facilities required by a modern tourist resort that includes all the services that will make
... Show MoreThe research aims to statement the main obstacles that prevent the application of total quality management (TQM) in a number of Iraqi service organizations, and by one organization in each of the sectors (health, finance, education, higher education, tourism), which are, (Al-Yarmouk Teaching Hospital, Rafidain Bank/ Branch of Hay Al-Arabi Al-Jadid, Al-Karkh/1 Directorate of Education, College of administration and Economics/ Baghdad University, International Palestine Hotel). The research also, tries to classify the priority of the obstacles depending on the type of service organization surveyed. And diagnoses the extent to which or the difference of the research sample members views on the order of obstacles of TQM, and also proposes a
... Show MoreThis paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinkin
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreThe research discusses the need to find the innovative structures and methodologies for developing Human Capital (HC) in Iraqi Universities. One of the most important of these structures is Communities of Practice (CoPs) which contributes to develop HC by using learning, teaching and training through the conversion speed of knowledge and creativity into practice. This research has been used the comparative approach through employing the methodology of Data Envelopment Analysis (DEA) by using (Excel 2010 - Solver) as a field evidence to prove the role of CoPs in developing HC. In light of the given information, a researcher adopted on an archived preliminary data about (23) colleges at Mosul University as a deliberate sample for t
... Show MoreRecent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreThe game theory has been applied to all situations where agents’ (people or companies) actions are utility-maximizing, and the collaborative offshoot of game theory has proven to be a robust tool for creating effective collaboration strategies in a broad range of applications. In this paper first, we employ the Banzhaf values to show the potential cost to waste producers in the case of a cooperation and to reduce the overall costs of processing non-recyclable waste during cooperation between producers. Secondly, we propose an application of the methodology to study a case for five waste producers' waste management in the Al-Mahmudiya factory with the aim of displaying the potential cost to waste producers in case of cooperatio
... Show MoreThe research aims to shed light on the nature of the tax gap in the income tax by the method of direct deduction and its reflection on the financial objective of the tax, and to determine the reasons for this gap in the deduction between the tax due in accordance with the laws and instructions in force and the tax actually paid. The tax gap is a real problem that cannot be ignored for what it represents loss of financial revenues due to the state.
The research problem is represented in the existence of a gap between the tax due according to direct deduction instructions and the tax actually paid according to the financial statements, and to achieve the objectives of the research and test the hypotheses, t
... Show MoreIn regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement
... Show More