Depletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compute the cost of production in extracting bioethanol from the golden shower fruit. Each treatment was replicated three (3) times. The Two-Factorial Analysis of Variance (ANOVA) of the Complete Randomized Design (CRD) was used to analyze the treatments. Treatments means were compared using the Duncan’s Multiple Range Test (DMRT).
Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreIn the past infectious diseases affected the quality of lifestyle during home confinement. The study conducted examines the influence of home confinement during the COVID-19 pandemic outbreak on lifestyle, mental wellbeing, nutritional status, and sleeping pattern.
An online multicategorical questionnaire was distributed to collect demographic information combined with the following tools: Food Frequency Questionnaire (FFQ), International Physical Activity Questionnaire (IPAQ), WHO-5 wellbeing score, and Pittsburgh Sleep Quality Index (PSQI). A snowball non-discriminate sampling procedure was
NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreThe ability of beans (Phaseolus vulgaris L.) to uptake three pharmaceuticals (diclofenac, mefenamic acid and metronidazole) from two types of soil (clay and sandy soil) was investigated in this study to explore the human exposure to these pharmaceuticals via the consumption of beans. A pot experiment was conducted with beans plants which were grown in two types of soil for six weeks under controlled conditions. During the experiment period, the soil pore water was collected weekly and the concentrations of the test compounds in soil pore water as well as in plant organs (roots, stems and leaves) were weekly determined.
The results showed that the studied pharmaceuticals were detected in all plant tissues; their concentration
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreErratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show More