This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a wide time frame. Two examples are provided for showing the ability and advantages of the proposed method to approximate the solution of the power law nonlinearity of NLSEs. For pictorial representation, graphical inputs are included to represent the solution and show the precision as well as the validity of the MMRDTM.
The researcher highlighted in his research on an important subject that people need, which is the excuse of ignorance in Islamic law. , As the flag of light and ignorance of darkness. Then the researcher lameness of the reasons for research in this subject as it is one of the assets that should be practiced by the ruler and the judge and the mufti and the diligent and jurisprudent, but the public should identify the issues that ignore ignorance and issues that are not excused even if claimed ignorance.
Then the researcher concluded the most important results, and recommendations that he wanted to set scientific rules for students of science and Muslims in general, to follow the issues of legitimacy and learn its provisions and i
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
Any person, regardless of his location in the air, whether he was kidnapped or trained, and then he performs a certain work, believes that his work is in vain, and by God, his deeds. I wonder if those who hold him in the first place will be safe in good form. He said that the essence of justice in the story is the story:
These are given the meaning we have fought in the fact that each group of. He went beyond creating a group of blocs, sects, and parties. If justice indicated one meaning, these relationships between people and peace would diminish. In fact, justice has only one concept, but there are several associations with it in the field of divorced one of these synonyms. However, the variation in racist drums in the encounte
... Show MoreStumpff functions are an infinite series that depends on the value of z. This value results from multiplying the reciprocal semi-major axis with a universal anomaly. The purpose from those functions is to calculate the variation of the universal parameter (variable) using Kepler's equation for different orbits. In this paper, each range for the reciprocal of the semi-major axis, universal anomaly, and z is calculated in order to study the behavior of Stumpff functions C(z) and S(z). The results showed that when z grew, Stumpff functions for hyperbola, parabola, and elliptical orbits were also growing. They intersected and had a tendency towards zero for both hyperbola and parabola orbits, but for elliptical orbits, Stumpff functions
... Show Moren this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.