Malaysia will be an ageing population by 2030 as the number of those aged 60 years and above has increased drastically from 6.2 percent in 2000 and is expected to reach 13.6 percent by 2030. There are many challenges that will be faced due to the ageing population, one of which is the increasing cost of pensions in the future. In view of that, it is necessary to investigate the effect of actuarial assumptions on pension liabilities under the perspective of ageing. To estimate the pension liabilities, the Projected Unit Credit method is used in the study and commutation functions are employed in the process. Demographic risk and salary risk have been identified as major risks in analyzing pension liabilities in this study. The sensitivity analyses will be conducted in the study to investigate how the pension liabilities will be affected when these major risks changes. This study analyzes nine scenarios under assumptions in the actuarial model, namely age of retirement, rate of mortality and rate of salary growth. The result of this study indicates that the implied mortality experience and salary growth rate assumptions have a significant impact on pension liabilities.
This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreVehicular ad hoc network (VANET) is a distinctive form of Mobile Ad hoc Network (MANET) that has attracted increasing research attention recently. The purpose of this study is to comprehensively investigate the elements constituting a VANET system and to address several challenges that have to be overcome to enable a reliable wireless communications within a vehicular environment. Furthermore, the study undertakes a survey of the taxonomy of existing VANET routing protocols, with particular emphasis on the strengths and limitations of these protocols in order to help solve VANET routing issues. Moreover, as mobile users demand constant network access regardless of their location, this study seeks to evaluate various mobility models for vehi
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreThis paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
Equilibrium adsorption isotherm for the removal of trifluralin from aqueous solutions using ? –alumina clay has been studied. The result shows that the isotherms were S3 according Giels classification. The effects of various experimental parameters such as contact time, adsorbent dosage, effect of pH and temperature of trifluralin on the adsorption capacities have been investigated. The adsorption isotherms were obtained by obeying freundlich adsorption isotherm with (R2 = 0.91249-0.8149). The thermodynamic parameters have been calculated by using the adsorption process at five different temperature, the values of ?H, ?G and ?S were (_1.0625) kj. mol-1, (7.628 - 7.831) kj.mol-1 and (_2.7966 - _2.9162) kg.
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.