The spread of novel coronavirus disease (COVID-19) has resulted in chaos around the globe. The infected cases are still increasing, with many countries still showing a trend of growing daily cases. To forecast the trend of active cases, a mathematical model, namely the SIR model was used, to visualize the spread of COVID-19. For this article, the forecast of the spread of the virus in Malaysia has been made, assuming that all Malaysian will eventually be susceptible. With no vaccine and antiviral drug currently developed, the visualization of how the peak of infection (namely flattening the curve) can be reduced to minimize the effect of COVID-19 disease. For Malaysians, let’s ensure to follow the rules and obey the SOP to lower the R0 value from time to time, hoping that the virus will vanish one day.
The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people’s lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this tech
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe coronavirus-pandemic has a major impact on women's-mental and physical-health. Polycystic-ovary-syndrome (PCOS) has a high-predisposition to many cardiometabolic-risk factors that increase susceptibility to severe complications of COVID-19 and also exhibit an increased likelihood of subfertility. The study includes the extent of the effect of COVID-19-virus on renin-levels, glutathione-s-transferase-activity and other biochemical parameters in PCOS-women. The study included 120 samples of ladies that involved: 80 PCOS-patients, and 40 healthy-ladies. Both main groups were divided into subgroups based on COVID-19 infected or not. Blood-samples were collected from PCOS-patients in Kamal-Al-Samara Hospital, at the period between Decembe
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThe study seeks the relationship between the mathematical-procedural Knowledge and the logical-mathematical intelligence among students at the third stage in mathematics department. To this end, three questions were arisen: what is the level of mathematical-procedural Knowledge among the third stage students in mathematics department regarding their gender? Do male or female students have more logical-mathematical intelligence and are there significant differences base on their gender? What kind of correlation is between the level of mathematical-procedural Knowledge and the logical-mathematical intelligence of male and female students in the third stage in the mathematics department? A sample of (75) male and female students at the thir
... Show MoreThe trading banks in Iraq invest their funds according to regulations imposed by the Central Bank in Iraq in different financial fields like stock exchanges, acquire stocks as assets that could be sold at any time as well as make loans and contributing in corporations establishment also magnitude foreign capital through direct contacts with foreign exchange markets.
We can summarize the problem of this paper as shortage in mathematical models that used in studying and analyzing these investments and according to this problem we used (a constructed mathematical model ) consists of three major indicators: profitability of total investment assets which is divided into three sub-indicators: owners equity risk indicator, debits risk i
... Show More