were prepared by condensation of 6-R-2amino bcnzothiazol with Salicyldehyde.These Schiff bases were found to reach with maleic anhydride and citraconic to give
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.
The title compound, [Ru3(μ3-NC6H4Br)2(CO)9], is a V-shaped triruthenium cluster, each side of the V being face-capped by a 4-bromophenylimide ligand. Each Ru atom is also ligated by three terminal carbonyl ligands. There are two molecules in the asymmetric unit with minor conformational differences.
Background: There are various secreted proteins affecting the prognosis of oral squamous cell carcinoma (OSCC) and one of them is Angiopoietin-2(Ang-2) which is thought to have an essential role in the development and progression of the tumor. Aim of the study: This study was conducted to determine the expression of (Ang-2) in (OSCC) to assess its correlations with clinicopathological parameters of the tumor. Material and Methods: 36 formalin- fixed, paraffin- embedded tissue blocks histologically diagnosed as OSCC were examined for Ang-2 immunohistochemical expression semi quantitively. Results: The expression of Ang-2 was significantly associated with histopathological grade (P value=0.023), while there is no significant association wi
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
NS-2 is a tool to simulate networks and events that occur per packet sequentially based on time and are widely used in the research field. NS-2 comes with NAM (Network Animator) that produces a visual representation it also supports several simulation protocols. The network can be tested end-to-end. This test includes data transmission, delay, jitter, packet-loss ratio and throughput. The Performance Analysis simulates a virtual network and tests for transport layer protocols at the same time with variable data and analyzes simulation results based on the network simulator NS-2.
A simple ,accurate and sensitive spectrophotometric method has been developed the determination of Cobalt(II) and Cupper (II) .The method is based on the chelation of Co(II) and Cu(II) ions with 4-(4´-pyrazolon azo) -2-Naphthol(APAN) in aqueous medium . The complexes have a maximum absorption at (513) and (506) nm and ? max 0.531×10 4 and 0.12×10 5 L.mol -1.cm -1 for Co(II) and Cu(II) respectively .The reagent and two complexes have been prepared in ethanolic solution.The stoichiometry of both complexes were found to be 1:2 (metal :legend) .The effects of various cations and anions on Co(II) and Cu(II) determination have been investigated .The stability constants and standard deviations for Co(II) and Cu(II) 0.291 x107 ,0.909X108 L.mol
... Show More