Preferred Language
Articles
/
bsj-5842
Ammonia Removal in Free-Surface Constructed Wetlands Employing Synthetic Floating Islands: Employing synthetic floating islands
...Show More Authors

Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake).  In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and a control, all replicated three times). A simple model was constructed as a framework for understanding N dynamics in each treatment.  The model was calibrated using data obtained from one treatment and validated independently for the other treatments. Specifically, we hypothesized that the nitrification and volatilization rate constants are inversely proportional to water depth and proportional to mat surface area. This allowed the relative magnitude of different removal mechanisms to be estimated.  The model was able to predict steady-state concentrations of AN and total oxidized nitrogen (TON) across the different treatments well (values for correlation in the regression between measured and predicted steady-state concentrations and RMSE were 0.88 and 0.40 mg N L-1 for AN, and 0.63 and 1.75 mg N L-1 for TON).  The results confirm that nitrification is the principal AN removal process, with maximum removal occurring in shallow systems with high matrix cover (i.e. a high ratio of biofilm surface area to water volume). Plant uptake was a relatively minor loss process compared to nitrification. Integrated experimental and model-based approach was found to be a useful tool to improve mechanistic understanding AN dynamics in FSCWs and system performance.

 

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Desalination And Water Treatment
Xylenol orange removal from aqueous solution by natural bauxite (BXT) and BXT-HDTMA: kinetic, thermodynamic and isotherm modeling
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Dimensional analysis of predicting the removal of chemical oxygen demand from domestic wastewater using moving bed biofilm reactor
...Show More Authors

Municipal wastewater sources are becoming increasingly important for reuse, for irrigation purposes, so they must be treated to meet environmentally friendly local or global standards. The aim of this study is to establish, calibrate, and validate a model for predicting chemical oxygen demand for the pilot plant of mobile biofilm reactors operating from municipal wastewater in Maaymyrh located in Hilla city Using the approach of dimensional analysis. The approach of Buckingham's theorem was used to derive a model of dimensional analysis design for the forecast of (COD) in the pilot plant. The effluent concentration (COD) It has been derived as a result of the influential concentration of (COD), dissolved oxygen (DO), volume of pilot plant

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Environmental Advances
Stability and performance studies of emulsion liquid membrane on pesticides removal using mixture of Fe3O4Â nanoparticles and span80
...Show More Authors

View Publication Preview PDF
Scopus (18)
Crossref (16)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Photochemistry And Photobiology A: Chemistry
Silver oxide-zeolite for removal of an emerging contaminant by simultaneous adsorption-photocatalytic degradation under simulated sunlight irradiation
...Show More Authors

View Publication
Scopus (45)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Wed Oct 04 2023
Journal Name
Environmental Progress & Sustainable Energy
Removal of <scp>E133</scp> brilliant blue dye from artificial wastewater by electrocoagulation using cans waste as electrodes
...Show More Authors
Abstract<p>Solid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm<sup>2</sup>), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on </p> ... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Feb 05 2023
Journal Name
Engineering, Technology & Applied Science Research
Performance Evaluation of Emulsion Liquid Membrane on Chlorpyrifos Pesticide Removal: Stability, Mass Transfer Coefficient, and Extraction Efficiency Studies
...Show More Authors

Emulsion Liquid Membrane (ELM) is an emerging technology that removes contaminants from water and industrial wastewater. This study investigated the stability and extraction efficiency of ELM for the removal of Chlorpyrifos Pesticide (CP) from wastewater. The stability was studied in terms of emulsion breakage. The proposed ELM included n-hexane as a diluent, span-80 as a surfactant, and hydrochloric acid (HCl) as a stripping agent. Parameters such as mixing speed, aqueous feed solution pH, internal-to-organic membrane volume ratio, and external-to-emulsion volume ratio were investigated. A minimum emulsion breakage of 0.66% coupled with a maximum chlorpyrifos extraction and stripping efficiency were achieved at 96.1% and 95.7% at b

... Show More
Crossref (6)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Chemical Data Collections
Removal of an anionic Eosin dye from aqueous solution using modified activated carbon prepared from date palm fronds
...Show More Authors

View Publication
Scopus (29)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Petroleum Science And Engineering
Operation of a MEG pilot regeneration system for organic acid and alkalinity removal during MDEA to FFCI switchover
...Show More Authors

View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Jun 21 2023
Journal Name
Journal Of Electrochemical Science And Engineering
Phenol removal by electro-Fenton process using a 3D electrode with iron foam as particles and carbon fibre modified with graphene
...Show More Authors

The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref