This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreAlthough many technological improvements are occurring in power production worldwide, power plants in third world countries are still using old technologies that are causing thermal pollution to the water bodies. Power facilities that dump hot water into water bodies are damaging aquatic life. In the study, the impact of the Al Dora thermal power plant on a nearby stretch of Tigris River in Baghdad city was assessed by measuring the temperature of the disposed of hot water in various cross-sections of the selected stretch of Tigris River, including measuring the thermal mixing length. The measurements were conducted in winter, spring, and summer. For field measurements, it was found that the impact of recovery distances
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
The research problem focused through the researcher's experience in the gymnastics game and the lack of use of educational models that give the student an important role in the educational process, so it became necessary to identify the type of prevailing style for students, and the need for diversity in the use of educational models based on scientific theories, including the Daniel Document model. Based on three theories of learning, which are structural, behavioral, and meaningful learning. The research aimed to identify the effect of using the Daniel model for people with two types of brain control (left and right) to learn the skill of the Cartwheel in artistic gymnastics for students of the second stage. The researcher used the experi
... Show MorePolyacrylamide Solutions of different concentrations (0.2, 0.4, 0.6, 0.8, 1.0 %) of Ag nanoparticles and ZnO nanoparticles were prepared, the viscosities and surface tension were measured for all solutions, where measurements indicated an increase in these properties with increased concentration, where the relative viscosity of polyacrylamide/zinc nanoparticles increased from 1.275 to 2.243, and the relative viscosity of polyacrylamide/silver nanoparticles increased from 1.178 to 1.934. Viscosity is significant parameters during electrospinning process. While the surface tension of the polyacrylamide/zinc nanoparticles has changed from 0.0343 Nm-1 to .0.0.0 Nm-1 and changed from .0.000Nm-1 to.0.0.0 Nm-1. Also the constants KH and KK were
... Show More