Preferred Language
Articles
/
bsj-572
First Order Nonlinear Neutral Delay Differential Equations

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Nonclassical Symmetry of Differential Equations

In this paper, we discuss the difference between classical and nonclassical symmetries. In addition, we found the non-classical symmetry of the Benjamin Bona Mahony Equation (BBM). Finally, we found a new exact solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical symmetry.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Application of delay integral equations in population growth

In this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Stabilizability of Riccati Matrix Fractional Delay Differential Equation

In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fractional Pantograph Delay Equations Solving by the Meshless Methods

This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Laplace Adomian and Laplace Modified Adomian Decomposition Methods for Solving Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type

In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical

... Show More
Scopus (6)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Blasius Equations

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
New Iterative Method for Solving Nonlinear Equations

The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.

Crossref
View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
numerical solution of nth order linear dealy differential

in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner

View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
GNSS Baseline Configuration Based on First Order Design

The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution  of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.

FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic

... Show More
View Publication