The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.
In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.
Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
Abstract:
Taghlib tribe had an important part in the history of the first century of
hijra. She managed to get the best social, economic and political basis in the
Arab- Islamic state. In this basis Taghlib was the best Dhimies in the Islamic
state. This tribe refused to be among the people of the book, and to be from
the people of dhima. That tribe refused to pay the Jizya and Khraj, but
accepted to pay double Sadaqa in stead of Jizya and Khraj, so in that case
many Muslims become angry.
Although their Christianity was naïve and simple, Taghlib hold it until the
end of the third century A.H. Taghlib did so because her people wanted to
keep their good relation with the Byzantine. Taghlib thought that the
At the last years, the interesting of measurement spicilists was increased to study differential item functioning (DIF) wich is reflect the difference of propability true response for test item from subgroups which have equal level of ability . The aims of this research are, inform the DIFat Namers’scale(2009) for mental health to prepare students and detect items that have DIF. Sample research contants (540) students, we use Mantel- Haenzel chi-square to detect DIF. The results are point to there are (26) items have DIF according to gender which are delated form the scale after that.
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
In this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c
... Show Morein this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory