In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific public area by using CCTV (closed-circuit television). The problem also occurs in case the software tool is inaccurate. The technique of this notion is to use large data of face images, some faces are wearing masks, and others are not wearing masks. The methodology is by using machine learning, which is characterized by a HOG (histogram orientation gradient) for extraction of features, then an SVM(support vector machine) for classification, as it can contribute to the literature and enhance mask detection accuracy. Several public datasets for masked and unmasked face images have been used in the experiments. The findings for accuracy are as follows: 97.00%, 100.0%, 97.50%, 95.0% for RWMFD (Real-world Masked Face Dataset)& GENK14k, SMFDB (Simulated Masked Face Recognition Dataset), MFRD (Masked Face Recognition Dataset), and MAFA (MAsked FAces)& GENK14k for databases, respectively. The results are promising as a comparison of this work has been made with the state-of-the-art. The workstation of this research used a webcam programmed by Matlab for real-time testing.
This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreThe main purpose of the paper is to identify the controllability of an existing production system; yogurt production line in Abu Ghraib Dairy Factory which has several machines of food processing and packing that has been studied. Through the starting of analysis, instability in production has been found in the factory. The analysis is built depending on experimental observation and data collection for different processing time of the machines, and statistical analysis has been conducted to model the production system. Arena Software is applied for simulating and analyzing the current state of the production system, and results are expanded to improve the system production and efficiency. Research method is applied to contribute in knowi
... Show MoreAbstract
Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.
Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e
... Show MoreWith the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show MoreToday, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show More