In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific public area by using CCTV (closed-circuit television). The problem also occurs in case the software tool is inaccurate. The technique of this notion is to use large data of face images, some faces are wearing masks, and others are not wearing masks. The methodology is by using machine learning, which is characterized by a HOG (histogram orientation gradient) for extraction of features, then an SVM(support vector machine) for classification, as it can contribute to the literature and enhance mask detection accuracy. Several public datasets for masked and unmasked face images have been used in the experiments. The findings for accuracy are as follows: 97.00%, 100.0%, 97.50%, 95.0% for RWMFD (Real-world Masked Face Dataset)& GENK14k, SMFDB (Simulated Masked Face Recognition Dataset), MFRD (Masked Face Recognition Dataset), and MAFA (MAsked FAces)& GENK14k for databases, respectively. The results are promising as a comparison of this work has been made with the state-of-the-art. The workstation of this research used a webcam programmed by Matlab for real-time testing.
Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show MoreThe research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.
The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat
... Show MoreFaces blurring is one of the important complex processes that is considered one of the advanced computer vision fields. The face blurring processes generally have two main steps to be done. The first step has detected the faces that appear in the frames while the second step is tracking the detected faces which based on the information extracted during the detection step. In the proposed method, an image is captured by the camera in real time, then the Viola Jones algorithm used for the purpose of detecting multiple faces in the captured image and for the purpose of reducing the time consumed to handle the entire captured image, the image background is removed and only the motion areas are processe
... Show MoreABSTRACT: BACKGROUND: The main goal of facelift surgery is to reduce the effect of aging by reposition of face soft tissue in to more youthful orientation. There are many methods for SMAS plication which had different design and vector of pull. AIM OF STUDY: To evaluate the effectiveness and longitivity of 7 shaped SMAS plication in facelift. PATIENT AND METHODS: From January 2020 to march 2021, 10 female patients with age (45-60) years were presented with facial sagging, those patients were subjected to subcutaneous facelift with 7 shaped SMAS plication with fat greft in Al-Shaheed Ghazi Al-Harri Hospital and Baghdad burn medical center at Baghdad medical complex. RESULTS: The average follow up period was 6 to 12 months. The mean operative
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreAO Dr. Ali Jihad, Journal of Physical Education, 2021
In data mining and machine learning methods, it is traditionally assumed that training data, test data, and the data that will be processed in the future, should have the same feature space distribution. This is a condition that will not happen in the real world. In order to overcome this challenge, domain adaptation-based methods are used. One of the existing challenges in domain adaptation-based methods is to select the most efficient features so that they can also show the most efficiency in the destination database. In this paper, a new feature selection method based on deep reinforcement learning is proposed. In the proposed method, in order to select the best and most appropriate features, the essential policies
... Show More