Preferred Language
Articles
/
bsj-5716
Constructing a Software Tool for Detecting Face Mask-wearing by Machine Learning
...Show More Authors

       In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific public area by using CCTV (closed-circuit television). The problem also occurs in case the software tool is inaccurate. The technique of this notion is to use large data of face images, some faces are wearing masks, and others are not wearing masks. The methodology is by using machine learning, which is characterized by a HOG (histogram orientation gradient) for extraction of features, then an SVM(support vector machine) for classification, as it can contribute to the literature and enhance mask detection accuracy. Several public datasets for masked and unmasked face images have been used in the experiments. The findings for accuracy are as follows: 97.00%, 100.0%, 97.50%, 95.0% for RWMFD (Real-world Masked Face Dataset)& GENK14k, SMFDB (Simulated Masked Face Recognition Dataset), MFRD (Masked Face Recognition Dataset), and MAFA (MAsked FAces)& GENK14k for databases, respectively. The results are promising as a comparison of this work has been made with the state-of-the-art. The workstation of this research used a webcam programmed by Matlab for real-time testing.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jun 15 2020
Journal Name
Al-academy
Constructing the audio format in the performance of the theater actor: يــاسين إسماعيل خلـف - فائـــــز طـــــــــــــه ســــــــالم
...Show More Authors

The science of (- - Semiology) comes in the introduction to language sciences and linguistics that addressed the levels of language building and its phonemic signs, through which we can monitor and analyze the data of the phoneme of the actor, and the ways to build his linguistic speech, especially since (the linguist Saussure - He emphasized that linguistque is only part of the science of signs, which is particularly advanced within logic, social psychology, and general psychology, and since language is in the origin - whatever language, and at what level - it is not A separate, single and unified language, in fact, they are intertwined, multiple, varied and renewed languages due to their influence The times and its development and the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Information Technology Management
Measuring the performance of the virtual teams in global software development projects
...Show More Authors

Scopus (7)
Scopus
Publication Date
Mon Feb 01 2016
Journal Name
International Journal Of Transportation Engineering And Traffic System, Ijtets
Comparative Modeling of Pavement Surface Texture Variables Using ANN and SPSS Software
...Show More Authors

The health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul

... Show More
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Chemical Sensor Based on a Hollow-Core Photonic Crystal Fiber
...Show More Authors

In this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.

View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Al–bahith Al–a'alami
The Communicative Integration in New Media: Building a Communicative Model
...Show More Authors

The internet, unlike other traditional means of communication, has a flexibility to stimulate the user and allows him to develop it. Perhaps, the reason for the superiority of the internet over other traditional means of communication is the possibility of change and transmission from one stage to another in a short period. This means that the internet is able to move from the use to the development of the use and then the development of means and innovation as the innovation of the internet is a logical product of the interaction of the user with the network. The internet invests all the proposals and ideas and does not ignore any even if it is simple. This is represented in social networking sites which in fact reflects personal emotio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Public Health In Practice
Can developing countries face novel coronavirus outbreak alone? The Iraqi situation
...Show More Authors

View Publication
Scopus (30)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref