In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific public area by using CCTV (closed-circuit television). The problem also occurs in case the software tool is inaccurate. The technique of this notion is to use large data of face images, some faces are wearing masks, and others are not wearing masks. The methodology is by using machine learning, which is characterized by a HOG (histogram orientation gradient) for extraction of features, then an SVM(support vector machine) for classification, as it can contribute to the literature and enhance mask detection accuracy. Several public datasets for masked and unmasked face images have been used in the experiments. The findings for accuracy are as follows: 97.00%, 100.0%, 97.50%, 95.0% for RWMFD (Real-world Masked Face Dataset)& GENK14k, SMFDB (Simulated Masked Face Recognition Dataset), MFRD (Masked Face Recognition Dataset), and MAFA (MAsked FAces)& GENK14k for databases, respectively. The results are promising as a comparison of this work has been made with the state-of-the-art. The workstation of this research used a webcam programmed by Matlab for real-time testing.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MorePurpose: The research aims to explore the impact Business Intelligence System (BIS) and Knowledge Conversion Processes (KCP) in the Building Learning Organization (LO) in KOREK Telecom Company in Baghdad city.
Design/methodology/approach: in order to achieve the objectives of the research has been the development of a questionnaire prepared for this purpose and then has tested the search in the telecommunications sector, representatives of one of the telecommunications companies in Baghdad city, has therefore chosen KOREK Telecom company as a sample for research, and the choice was based on the best standard international companies to serve mobile communications in terms o
... Show MoreIn multivariate survival analysis, estimating the multivariate distribution functions and then measuring the association between survival times are of great interest. Copula functions, such as Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical situations and applicable fo
... Show MoreMany undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study which consists of 90 (male and female) stud
... Show MoreMany undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study wh
... Show MoreThe paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreIn cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show More