Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both solar power automation subsystem and transformer simultaneously or consumption unit; otherwise it works with fully or lesser efficiency. Statistically independent failures and repairs are considered. Using the elementary probabilities phenomenon incorporated with differential equations is employed to examine the system reliability, for repairable and non-repairable system, and to analyze its cost function. The accuracy and consistency of the system can be improved by feed forward- back propagation neural network (FFBPNN) approach. Its gradient descent learning mechanism can update the neural weights and hence the results up to the desired accuracy in each iteration, and aside the problem of vanishing gradient in other neural networks, that increasing the efficiency of the system in real time. MATLAB code for FFBP algorithm is built to improve the values of reliability and cost function by minimizing the error up to 0.0001 precision. Numerical illustrations are considered with their data tables and graphs, to demonstrate and analyze the results in the form of reliability and cost function, which may be helpful for system analyzers.
Abstract
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The sim
... Show MoreIn IRAQ, the air conditioners are the principal cause of high electrical demand. In summer, the outer temperature sometimes exceeds 500C which significantly effects on the A/C system performance and power consumed. In the present work, the improvement in mechanical and electrical performance of split A/C system is investigated experimentally and analytically. In this paper, performance and energy saving enhancement of a split-A/C system was experimentally investigated to be efficiently compatible with elevated temperature weathers. This improvement is accomplished via Smart Control System integrate with Proportional-Integral- Differential PID algorithm. The PIC16F877A micro-controller has been programmed with the PID and PWM c
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreIn this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the
... Show MoreThis research estimates the effect of independent factors like filler (3%, 6%, 9%, 11% weight fraction), normal load (5N, 10N, 15N), and time sliding (5,7 , 9 minutes) on wear behavior of unsaturated polyester resin reinforced with jute fiber and waste eggshell and, rice husk powder composites by utilizing a statistical approach. The specimens polymeric composite prepared from resin unsaturated polyester filled with (4% weight fraction) jute fiber, and (3%, 6%, 9%, 11% weight fraction) eggshell, and rice husk by utilizing (hand lay-up) molding. Dry sliding wear experiments were carried utilizing a standard (pin on disc test setup) following a well designed empirical schedule that depends on Taguchi’s experimental design L9 (MINIT
... Show MoreAbstract
In order to enhance the efficiency of flat plate solar water collectors without changing in its original shape and with low additional cost, twisted strips are inserted inside its riser pipes. Three flat plate collectors are used for test. Family of twisted strips are inserted inside each collector risers with different twisted ratios (TR=3,4,5). The collectors are connected in parallel mode (Z-Configuration) and are exposed to the same conditions (solar radiation and ambient temperature) .The experimental results show that, the highest heat transfer rate occurs at twisted ratio (3) .Consequently, for the same twisted ratio the daily efficiencies for the solar collector at d
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreMany people take protein supplements in an effort to gain muscle. However, there is some controversy as to whether this is really effective. There is evidence suggesting that consuming high level s of protein may in fact have negative side effects for health. The current study included 29 young Iraqi building muscles in two different groups (taken and not protein supplements) (age range=17-31 years), the cases were selected from family, friends, college students, and Gyms), from November 2014 to March 2015. A careful history was obtained from each volunteer including age, duration of sports, type of supplements, and family history of diseases. Some biochemical parameters like (glucose, urea, uric acid, creatinine, bilirubin, serum protei
... Show More