Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both solar power automation subsystem and transformer simultaneously or consumption unit; otherwise it works with fully or lesser efficiency. Statistically independent failures and repairs are considered. Using the elementary probabilities phenomenon incorporated with differential equations is employed to examine the system reliability, for repairable and non-repairable system, and to analyze its cost function. The accuracy and consistency of the system can be improved by feed forward- back propagation neural network (FFBPNN) approach. Its gradient descent learning mechanism can update the neural weights and hence the results up to the desired accuracy in each iteration, and aside the problem of vanishing gradient in other neural networks, that increasing the efficiency of the system in real time. MATLAB code for FFBP algorithm is built to improve the values of reliability and cost function by minimizing the error up to 0.0001 precision. Numerical illustrations are considered with their data tables and graphs, to demonstrate and analyze the results in the form of reliability and cost function, which may be helpful for system analyzers.
In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show MoreThe developments and transformations taking place in the era and the growth of knowledge economies and communication technology led this development to compel higher education institutions in Iraq to reconsider their objectives to keep pace with development. And one of the most important tools of development was the application of e-learning standards and its long-term impact on the performance of the educational institution. Performance auditing plays an important role in verifying the extent to which these institutions have implemented their activities and programs that auditing performance by adopting e-learning standards helps the institutions’ management by providing appropriate information on the extent to which they achieve thei
... Show MoreA plastic tubes used as absorber of active flat plate solar collector (FPSC) for heating water were studied numerically and experimentally. The set-up is located in Babylon (republic of Iraq) 43.80 East longitude and 32.30 North latitude with titled of 450 toward the south direction. The study involved three dimensions mathematical model for flat coil plastic absorber which solved by FLUENT-ANSYS-R.18 program. Experiments were conducted at outdoor conditions for clear days on January and February 2018 with various water volume flow rates namely (500, 750, 1000, 1250, and 1500 Liter per hour LPH) on each month for Reynolds number range of (1 x 104 to 5 x 104) th
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
This study investigates self-perception and self-branding on Instagram among young Arab women in the UAE, focusing on how they curate, negotiate and perform their digital identities and whether their digital self-presentation in any way compromises their sense of authenticity. The study is based on 11 interviews with young women in the UAE, between the ages of 20 and 30, in addition to online observation to follow the participants’ activities on Instagram. The study demonstrates that while social and digital media platforms may play a role in “empowering” Arab women, women tend to set their boundaries of authenticity shaped according to their audience’s expectations and their in-groups. This confirms the r
... Show MoreFuture wireless communication systems must be able to accommodate a large number of users and simultaneously to provide the high data rates at the required quality of service. In this paper a method is proposed to perform the N-Discrete Hartley Transform (N-DHT) mapper, which are equivalent to 4-Quadrature Amplitude Modulation (QAM), 16-QAM, 64-QAM, 256-QAM, … etc. in spectral efficiency. The N-DHT mapper is chosen in the Multi Carrier Code Division Multiple Access (MC-CDMA) structure to serve as a data mapper instead of the conventional data mapping techniques like QPSK and QAM schemes. The proposed system is simulated using MATLAB and compared with conventional MC-CDMA for Additive White Gaussian Noise, flat, and multi-path selective fa
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show More