Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both solar power automation subsystem and transformer simultaneously or consumption unit; otherwise it works with fully or lesser efficiency. Statistically independent failures and repairs are considered. Using the elementary probabilities phenomenon incorporated with differential equations is employed to examine the system reliability, for repairable and non-repairable system, and to analyze its cost function. The accuracy and consistency of the system can be improved by feed forward- back propagation neural network (FFBPNN) approach. Its gradient descent learning mechanism can update the neural weights and hence the results up to the desired accuracy in each iteration, and aside the problem of vanishing gradient in other neural networks, that increasing the efficiency of the system in real time. MATLAB code for FFBP algorithm is built to improve the values of reliability and cost function by minimizing the error up to 0.0001 precision. Numerical illustrations are considered with their data tables and graphs, to demonstrate and analyze the results in the form of reliability and cost function, which may be helpful for system analyzers.
Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreBackground: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreIn digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. Th
... Show MoreInstitutions and companies are looking to reduce spending on buildings and services according to scientific methods, provided they reach the same purpose but at a lower cost. On this basis, this paper proposes a model to measure and reduce maintenance costs in one of the public sector institutions in Iraq by using performance indicators that fit the nature of the work of this institution and the available data. The paper relied on studying the nature of the institution’s work in the maintenance field and looking at the type of data available to know the type and number of appropriate indicators to create the model. Maintenance data were collected for the previous six years by reviewing the maintenance and financial dep
... Show MoreIn this work, the effect of different particle size on the nonlinear optical properties of silver nanoparticles in de-ionized water was studied. The experimental observation of the far field diffraction patterns by CCD camera in two and three dimensions. The maximum change of nonlinear refractive index and the relative phase shift were calculated. The self-defocusing technique was used with a continuous-wave radiation from DPSS Blue laser .The wavelength is 473 nm with an output power of 270 mW. All the Ag colloids samples containing the sizes 15, 30, 50, and 70 nm of silver nanoparticles used in the study were chemically prepared. It was found that the nonlinear refractive index is a particle size dependent and of the order of 10-7 cm2/
... Show MoreA Mobile Ad hoc Network (MANET) is a collection of mobile nodes, that forms on the fly a temporary wireless multi-hop network in a self-organizing way, without relying on any established infrastructure. In MANET, a pair of nodes exchange messages either over a direct wireless link, or over a sequence of wireless links including one or more intermediate nodes. For this purpose, an efficient routing protocol is required. This paper introduced performance study of three of MANET protocols (AODV, GRP and OSPFv3). This study was one of the newer studies because wireless communication played an important role in today’s application and the field of mobile ad hoc network becomes very popular for the researchers in the last years. This study w
... Show MoreImage compression is a suitable technique to reduce the storage space of an image, increase the area of storage in the device, and speed up the transmission process. In this paper, a new idea for image compression is proposed to improve the performance of the Absolute Moment Block Truncation Coding (AMBTC) method depending on Weber's law condition to distinguish uniform blocks (i.e., low and constant details blocks) from non-uniform blocks in original images. Then, all elements in the bitmap of each uniform block are represented by zero. After that, the lossless method, which is Run Length method, is used for compressing the bits more, which represent the bitmap of these uniform blocks. Via this simple idea, the result is improving
... Show MoreA demonstration of the inverse kinematics is a very complex problem for redundant robot manipulator. This paper presents the solution of inverse kinematics for one of redundant robots manipulator (three link robot) by combing of two intelligent algorithms GA (Genetic Algorithm) and NN (Neural Network). The inputs are position and orientation of three link robot. These inputs are entering to Back Propagation Neural Network (BPNN). The weights of BPNN are optimized using continuous GA. The (Mean Square Error) MSE is also computed between the estimated and desired outputs of joint angles. In this paper, the fitness function in GA is proposed. The sinwave and circular for three link robot end effecter and desired trajectories are simulated b
... Show More