Gingival crevicular fluid (GCF) may reflect the events associated with orthodontic tooth movement. Attempts have been conducted to identify biomarkers reflecting optimum orthodontic force, unwanted sequallea (i.e. root resorption) and accelerated tooth movement. The aim of the present study is to find out a standardized GCF collection, storage and total protein extraction method from apparently healthy gingival sites with orthodontics that is compatible with further high-throughput proteomics. Eighteen patients who required extractions of both maxillary first premolars were recruited in this study. These teeth were randomly assigned to either heavy (225g) or light force (25g), and their site specific GCF was collected at baseline and after 1hr, 1day, 7days, 14days, 21days and 28days post force application. Periostrips were used for GCF collection and subsequent phosphate buffered saline (PBS) was used for immediate protein elution with centrifugal speed of 10000rpm for 5min and stored at -80°C. Protein concentration was estimated using Bradford colorimetric assay. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out to resolve the purity of proteins in the collected samples and the method of collection was validated by western immuno-blotting of alpha amylase salivary enzyme. The current collection, storage and protein extraction protocol showed the best protein recovery and purity with validated collection free of salivary contamination. In conclusion, tiny GCF volume from healthy sites and evaporation issues of such promising non-invasive fluid motivate us to investigate a standardized protocol enabling optimal preservation of GCF sample and the currently followed protocol may serve as a reference for future proteomic studies searching for GCF biomarkers in diagnosing and monitoring orthodontic tooth movement.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreA simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl
... Show MoreAbstract
In this study, modified organic solvent (organosolv) method was applied to remove high lignin content in the date palm fronds (type Al-Zahdi) which was taken from the Iraqi gardens. In modified organosolv, lignocellulosic material is fractionated into its constituents (lignin, cellulose and hemicellulose). In this process, solvent (organic)-water is brought into contact with the lignocellulosic biomass at high temperature, using stainless steel reactor (digester). Therefor; most of hemicellulose will remove from the biomass, while the solid residue (mainly cellulose) can be used in various industrial fields. Three variables were studied in this process: temperature, ratio of ethano
... Show MoreDue to the importance of the extraction process in many engineering and medical industries, in addition to great interest in medicinal plants, in this research, microwave-assisted extraction has been applied to extract some active compounds from Rosmarinus officinalis leaves. The optimal extraction conditions were then determined by calculating the ratio and extraction efficiency. The process has also been described through kinetic study by applying five kinetic models, the Hyperbolic diffusion model, Power low model, the First order reaction model, Elovich's model, and Fick's second law diffusion model and determining their compatibility with the studies operation, and determining the kinetic constants for each model. The result
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreIn this paper the process of metal ions extraction (Zn(II) and Cu(II)) was studied in PEG-KCl aqueous two phase system was investigated without using an extracting agent. The experimental runs were performance at constant temperature (25 oC), constant mixing time (30 min), and constant PH of the solution (about 3). The effect of KCl salt concentration (from 10% to 25%), volumetric phase ratio of PEG solution to KCl solution (from 0.5 to 2), and the initial metal ion concentration (from 0.25 ml to 2 ml of 1 gm/L solution) were investigated on the percent extraction of Zn(II) and Cu(II). The results indicated that the percent extraction of metal ions increase with increasing of salt concentration and phase ratio, and slightly de
... Show MoreIn this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More