The efficiency of attapulgite liners as anti-seepage for crude oil is examined. Consideration is given to the potential use of raw attapulgite and mixture attapulgite with prairie hay and coconut husk as liners to prevent crude oil seepage. Attapulgite clay used in this study was brought from Injana formation /Western Desert of Iraq. Two types of Crude oil brought from Iraqi oil fields were used in experiments; heavy crude oil from East-Baghdad oil field and light crude oil from Nassiriya oil field. Initially the basic properties of attapulgite and crude oils were determined. The attapulgite clay was subjected to mineralogical, chemical and scanning electron microscope analyses. Raw Attapulgite 150µm, 75µm, and 53µm were tested as anti-seepage liners for heavy and light crude oil. Experiments showed that raw attapulgite liners 53µm and 75µm are good in terms of retention and prevention of seepage so they can be used as the main layer to impede the flow of heavy crude oil. Raw attapulgite150µm could not be used as a liner to impede the flow of crude oil. This type of liner is totally inefficient for heavy and light crude oil. Adding prairie hay to attapulgite 150µm gives a good barrier medium that retains heavy crude oil and prevents it from seepage as long as possible. Raw attapulgite liners failed to prevent light crude oil seepage whereas the partial substitution of attapulgite by prairie hay or coconut enhanced the performance of the liner. Moreover, the addition of prairie hay with coconut to attapulgite enhanced the performance of the liner to a greater extent compared to raw attapulgite liners and mixture liner attapulgite with prairie hay.
In the present work, asphaltenes and resins separated from emulsion samples collected from two Iraqi oil wells, Nafut Kana (Nk) and Basrah were used to study the emulsion stability. The effect of oil resins to asphaltene (R/A) ratio, pH of the aqueous phase, addition of paraffinic solvent (n-heptane), aromatic solvent (toluene), and blend of both (heptol) in various proportions on the stability of emulsions had been investigated. The conditions of experiments were specified as an agitation speed of 1000 rpm for 30 minutes, heating at 50 °C, and water content of 30%. The results showed that as the R/A ratio increases, the emulsion will be unstable and the amount of water separated from emulsion increases. It was noticed that the em
... Show Moreقياس وتحليل تأثير صدمات أسعار النفط الخام على راس المال البشري في العراق للمدة (1970 – 2021)
In the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreThis work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show More
Abstract
Oil is the most important natural resources in Iraq and represents the goal to others as well as Iraqi people. It is gift from God to all Iraqi people now and future. So we must maintain it and invest its revenue that achieve development in country and ensure the next generations' rights in it without external costs or negative externalities from extracted and invested it.
The most problems that we attempt to solve by this research are the exhausted, environmental degradation and theft from next generation that produced with oil contracts between Iraq and foreign companies. From here was th
... Show MoreThe electrospun nanofibers membranes have gained considerable interest in water filtration applications. In this work, the fabrication and characterization of the electrospun polyacrylonitrile-based nonwoven nanofibers membrane are reported. Then, the membrane's performance and antifouling properties were evaluated in removing emulsified oil using a cross flow filtration system. The membranes were fabricated with different polyacrylonitrile (PAN) concentrations (8, 11, and 14 wt. %) in N, N-Dimethylformamide (DMF) solvent resulted in various average fiber sizes, porosity, contact angle, permeability, oil rejection, and antifouling properties. Analyses of surface morphology of the fabricated membranes before and after oil removal revealed
... Show More