In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compared to the first order one. The verification has been done by using MATLAB and Simulink software.
The aim of this work is to evaluate the onc-electron expectation values < r > from the radial electronic density funetion D(r) for different wave ?'unctions for the 2s state of Li atom. The wave functions used were published in 1963,174? and 1993 , respectavily. Using " " ' wave function as a Slater determinant has used the positioning technique for the analysis open shell system of Li (Is2 2s) State.
Abstract
The research aims to build a training program to develop some executive functions for kindergarten children. To achieve this goal, the two researchers built the program according to the following steps:
1. Determining the general objective of the program.
2. Determining the behavioral objectives of the program.
3. Determining the included content in the program.
4. Implementing the content of the activities of the program.
5. Evaluating the Program.
The program included (12) training activities, the training activities included several items: the title of the activity, the time of implementation of the activity, the general objective of the activity, the procedural behavioral objective, the means and tools u
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
This study synthesized zeolite 4A, and hierarchical composite structure consisting of zeolite 4A- carbon were successfully prepared. Hydrothermal method was used to grow a layer of zeolite 4A over porous carbon surfaces to enhance mass transfer and increase surface area of zeolite. The products then were used to remove radioactive cesium137Cs from liquid wastewater. Iraqi dates leaves midribs (DM) were used as locally available agricultural waste to prepare low- cost porous carbon, using carbonization method in tubular furnace at 900C for two hours. Hierarchical porous structures including zeolite are prepared by mechanically activating the carbon surface via Ultrasonicating nanoparticles suspension of ground zeolite type 4A.F
... Show MoreThe main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
