Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On these bases, this work aims to improve FA using variable neighborhood search (VNS) as a local search method, providing VNS the benefit of the trade-off between the exploration and exploitation abilities. The proposed FA-VNS allows fireflies to improve the clustering solutions with the ability to enhance the clustering solutions and maintain the diversity of the clustering solutions during the search process using the perturbation operators of VNS. To evaluate the performance of the algorithm, eight benchmark datasets are utilized with four well-known clustering algorithms. The comparison according to the internal and external evaluation metrics indicates that the proposed FA-VNS can produce more compact clustering solutions than the well-known clustering algorithms.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe Arabic grammatical theory is characterized by the characteristics that distinguish it from other languages. It is based on the following equation: In its entirety a homogeneous linguistic system that blends with the social nature of the Arab, his beliefs, and his culture.
This means that this theory was born naturally, after the labor of maintaining an integrated inheritance, starting with its legal text (the Koran), and ends with its features of multiple attributes.
Saber was carrying the founding crucible of that theory, which takes over from his teacher, Hebron, to be built on what it has reached. It is redundant to point to his location and the status of his book.
So came to my research tagged: (c
Heuristic approaches are traditionally applied to find the optimal size and optimal location of Flexible AC Transmission Systems (FACTS) devices in power systems. Genetic Algorithm (GA) technique has been applied to solve power engineering optimization problems giving better results than classical methods. This paper shows the application of GA for optimal sizing and allocation of a Static Compensator (STATCOM) in a power system. STATCOM devices used to increase transmission systems capacity and enhance voltage stability by regulate the voltages at its terminal by controlling the amount of reactive power injected into or absorbed from the power system. IEEE 5-bus standard system is used as an example to illustrate the te
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show More
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreThe study presents the performance of flexural strengthening of concrete members exposed to partially unbonded prestressing with a particular emphasis on the amount (0, 14.2, and 28.5%) of cut strands-symmetrical and asymmetrical damage. In addition to examining the influence of cut strands on the remaining capacity of post-tensioned unbonded members and the effectiveness of carbon fiber reinforced polymer laminates restoration, The investigated results on rectangular members subjected to a four-point static bending load based on the composition of the laminate affected the stress of the CFRP, the failure mode, and flexural strength and deflection are covered in this study. The experimental results revealed that the usage of CFRP la
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.