Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On these bases, this work aims to improve FA using variable neighborhood search (VNS) as a local search method, providing VNS the benefit of the trade-off between the exploration and exploitation abilities. The proposed FA-VNS allows fireflies to improve the clustering solutions with the ability to enhance the clustering solutions and maintain the diversity of the clustering solutions during the search process using the perturbation operators of VNS. To evaluate the performance of the algorithm, eight benchmark datasets are utilized with four well-known clustering algorithms. The comparison according to the internal and external evaluation metrics indicates that the proposed FA-VNS can produce more compact clustering solutions than the well-known clustering algorithms.
E-learning is a lifeline for the educational process, which contributed to the sustainability of working educational organizations and prevented them from stopping, so the study came to measure the compatibility between E-learning quality dimensions (information technology, educational curricula, teaching methods, and intellectual capital of educational institution) as an independent variable, and educational services quality dimensions represented by (safety, tangibility, reliability and Confidence) as a dependent variable. The sample was 150 teachers was drawn from the College of Administration and Economics community of 293 teachers through the use of several statistical methods to measure the degree of correlation and impact between the
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreAgriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes. The data augmentation techniques have been used. In addition to dropout and weight reg
... Show MoreA global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets
... Show MoreThe present paper stresses the direct effect of the situational dimension termed as “reality” on the authors’ thoughts and attitudes. Every text is placed within a particular situation which has to be correctly identified by the translator as the first and the most important step for a good translation. Hence, the content of any word production reflects some part of reality. Comprehending any text includes comprehending the reality’s different dimensions as reflected in the text and, thus illuminating the connection of reality features.
Аннотация
Исследование под названием ((«Понимание реальности» средство полно
... Show MoreBackground: Many anti-obesity medicines have been increased in recent years to solve the problem of obesity; among these medicines are Green Lean Body Capsules (GLBCs) which contain green plants and fruits extract.
Objective: This study was designed to evaluate the effects of daily oral consumption of GLBCs on level of serum lipids, renal function tests, and the histological structure of the kidney in albino rats.
Materials and Methods: Twenty adult albino male rats weighing 240-260 g were divided into 2 equal groups: control group and GLBCs-treated group. During the 4-weeks treatment, each rat in the GLBCs-treated group was orally administered with 20 mg/kg B.W. of GLBCs, while the control rats were orally
The study aims to identify the effectiveness of a structural theory-based training program in enhancing the teaching practices of Arabic language teachers teaching grade ten in South Al Batinah in Sultanate of Oman. The study used the quasi-experimental design, and the sample consisted of 40 male and female teachers. To achieve the objectives of the study, a training program, an observation form and a measurement tool of teachers’ tendencies towards a structural teaching were made. The program was implemented with an experimental group of 20 female and male teachers in the first semester of the academic year 2018/2019. The study has found that there is a statistically significant difference between the average grades before and after i
... Show MoreThe research aimed to statement, which impact that the development of Iraqi auditing standards in the fight against corruption and to fulfill the reform requirements by conducting a comparative study analysis with a framework proposal to amend the Iraqi Audit directory number statement (6) issued by the Accounting and Auditing Standards Board of the Republic of Iraq dated 08/24/2002 on audit planning and supervision on the basis of the latest versions of international auditing standards in this regard.
The researchers concluded that there is a need to update the standards (evidence) audit accredited in the Republic of Iraq in accordance with international auditing standards to meet the requirements of the report of the external a
... Show MoreForeign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi
... Show MoreAbstract
It considers training programs is an important process contributing to provide employees with the skills required to do their jobs efficiently and effectively, so it should be concerned with and the focus of all government our organizations, and perhaps the most important reasons that I was invited to select the subject (evaluation of training programs directed toward the diagnosis of the phenomenon of financial and administrative corruption) It is the importance of those programs working in the regulatory institutions General and the Office of Inspector General of Finance and the Ministry particularly for employees because of their role in the development of their skills and their experience and their beha
... Show More