Automated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breathing difficulty) used to diagnose the person being infected by COVID-19 virus or not. Secondly, this approach divides the infected peoples into four classes, based on their immune system risk level (very high degree, high degree, mild degree, and normal), and using two indices of age and current health status like diabetes, heart disorders, or hypertension. Where, these people are graded and expected to comply with their class regulations. There are six important COVID-19 virus infections of different classes that should receive immediate health care to save their lives. When the test is positive, the patient age is considered to choose one of the six classifications depending on the patient symptoms to provide him the suitable care as one of the four types of suggested treatment protocol of COVID-19 virus infection in COVID-19 DSS application. Finally, a report of all information about any classification case of COVID-19 infection is printed where this report includes the status of patient (infection level) and the prevention protocol. Later, the program sends the report to the control centre (medical expert) containing the information. In this paper, it was suggested the use of C4.5 Algorithm for decision tree.
Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and e
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreWater contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreIn this paper, a single link flexible joint robot is used to evaluate a tracking trajectory control and vibration reduction by a super-twisting integral sliding mode (ST-ISMC). Normally, the system with joint flexibility has inevitably some uncertainties and external disturbances. In conventional sliding mode control, the robustness property is not guaranteed during the reaching phase. This disadvantage is addressed by applying ISMC that eliminates a reaching phase to ensure the robustness from the beginning of a process. To design this controller, the linear quadratic regulator (LQR) controller is first designed as the nominal control to decide a desired performance for both tracking and vibration responses. Subsequently, discontinuous con
... Show More