Automated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breathing difficulty) used to diagnose the person being infected by COVID-19 virus or not. Secondly, this approach divides the infected peoples into four classes, based on their immune system risk level (very high degree, high degree, mild degree, and normal), and using two indices of age and current health status like diabetes, heart disorders, or hypertension. Where, these people are graded and expected to comply with their class regulations. There are six important COVID-19 virus infections of different classes that should receive immediate health care to save their lives. When the test is positive, the patient age is considered to choose one of the six classifications depending on the patient symptoms to provide him the suitable care as one of the four types of suggested treatment protocol of COVID-19 virus infection in COVID-19 DSS application. Finally, a report of all information about any classification case of COVID-19 infection is printed where this report includes the status of patient (infection level) and the prevention protocol. Later, the program sends the report to the control centre (medical expert) containing the information. In this paper, it was suggested the use of C4.5 Algorithm for decision tree.
Background: Corona virus disease 2019 (COVID-19) is a communicable disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, China, and has since spread globally, leading to an ongoing pandemic.
Aim of study: to review the clinical, lab investigation and imaging techniques, in pediatric age group affected COVID-19 to help medical experts better understand and supply timely diagnosis and treatment.
Subjects and methods: this study is a retrospective descriptive clinical study. The medical records of patients were analyzed. Information’s recorded include demographic data, exposure history, symptoms, signs, laboratory findin
... Show MoreRecommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreThe current research aimed to identify the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis. It also aims to identify the recovery and resuming plan to the business environment. The research followed the descriptive survey to find out the views of 34 internal auditors at various functional levels in the Kingdom of Saudi Arabia. Spreadsheets (Excel) were used to analyze the data collected by a questionnaire which composed of 43 statements, covering the tasks that the internal auditors can perform to face the COVID-19 crisis. Results revealed that the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis is to en
... Show MoreThe two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreBackground: Severe forms of Coronavirus disease 2019 (COVID‐19) were found among 6 - 10% of all COVID-19 patients. Acute respiratory distress syndrome ARDS is non-cardiogenic pulmonary edema manifested by the rapid development of shortness of breath, tachypnea, and hypoxemia. Patients’ outcomes after critical care for COVID-19 have not been adequately documented in this low-resource environment, despite advocacy for prevention and response measures in low- and middle-income countries.
Objectives: To highlight the rate of severe illness among COVID-19 patients and its associated factors in Al-Imam Ali Hospital, Baghdad-Iraq 2021.
Patients and Methods: A descriptive cross
... Show MoreA global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets
... Show MoreBackground: Echinococcus granulosus is a one major species of medical and public health importance which causes cystic echinococcosis.Hydatid disease is able to modulate antiparasite immune responses, persist and flourish in humans.
Objective: The main objective of this study is to diagnostic value for hydatidosis and to identify the prevalence in human in two different areas of Baghdad city which include urban and rural areas. Evaluating hydatid fluid antigen and hydatid cyst wall antigen for diagnosis of cystic echinococcosis(CE). preparation ELISA kit for detecting specific antibodies in patients and relative sera is considered as an important step in determining the recurrent case after surgical opera