Thin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.
In this study the as-deposited and heat treated at 423K of conductive blend graphene oxide (GO)/ poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) thin films was prepared with different PEDOT:PSS concentration (0, 0.25, 0.5, 0.75 and 1)w/w on pre-cleaned glass substrate by spin coater. The XRD analysis indicate the existence of the preffered peak (001) of GO around 2θ=8.24° which is domain in all GO/ PEDOT:PSS films characterized for GO, this result approve the good quality of the PEDOT:PSS dispersion in GO, this peak shifted to the lower 2θ with increasing PEDOT:PSS concentration and after annealing process. The scanning electron microscopy (SEM) images and atomic force microscopy (AFM) clearly sh
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
In this work, the effects of x-value on electrical and optical properties was studied for the two dimensional (2D)GaAs1-xPxstructure by applying the density functional theory.We found that the gallium arsenide(GaAs) and gallium phosphide(GaP) monolayers are bound to each other, while the charge transfer between these two materialsleads to tuning the band gap value between 1.5 eV for GaAs to 2.24 eV for GaP. The density of state, band structure, and optical properties are investigated in this paper.
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
Magnesium-doped Zinc oxide (ZnO: Mg) nanorods (NRs) films and pure Zinc oxide deposited on the p-silicon substrates were prepared by hydrothermal method. The doping level of the Mg concentration (atoms ratio of Mg to Zn was chosen to be 0.75% and 1.5%. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of the Mg-doped ZnO NRs. Under 10V applied bias voltage, the responsivity of p-n junction UV photodiode based on pure ZnO and Mg: ZnO with doping ratio (0.75% and 1.5%) was 0.06 A/W and (0.15A/W and 0.27A/W) at UV illumination of wavelength 365 nm respectively, 0.071 A/W and (0.084A/W and 0.11A/W) fo
... Show MoreCdSe/CdS Core/shell nanostructures were prepared through the chemical synthesis method. XRD ,FESEM and TEM investigations confirmed the formation of core/shell structure for the sample. The AFM measurement was employed to reveal the morphology of the prepared thin films. Optical characterizations of the quantum dots were done by UV-visible and photoluminescence spectra. It was found that the quantum dots prepared has good optical properties. Due to the presence of shell coating on core CdSe, the energy gap of the core/shell nanomaterial were increased from 2.2 to 2.3eV. The resulted QDs are a promising candidate for photovoltaic and biosensor applications.
Utilizing first principles calculations within PW91 exchange-correlation method, we investigated a boron sheet that exhibits related electronic properties. The 2-dimensional boron sheet is flattened and has an atomic structure where the pair cores of every three ordered hexagons within the hexagonal network are loaded up by extra atoms, which saves the triangular lattice symmetry. The boron sheet takes possession of intrinsic metal properties and the electronic bands are comparable to the bands of the graphene that are close to the Fermi level. The real and imaginary parts of the dielectric function show a metallic or semiconductor behaviour, depending on the electric field direction.
In this research, the electrical conductivity and Hall effect measurements have been investigated on the CuInTe2 (CIT) thin films prepared by thermal evaporation technique on glass substrate at room temperature as a function of annealing temperature (R.T,473,673)K for different thicknesses (300 and 600) nm. The samples were annealed for one hour. The electrical conductivity analysis results demonstrated that all samples prepared have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), and the electrical conductivity increases with the increase of annealing temperature whereas it showed opposite trend with thickness , where the electrical conductivity would d
... Show More