Preferred Language
Articles
/
bsj-557
study Of Optical Properties Of Copper-Doped Cds Thin Films
...Show More Authors

Thin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Substrate Temperature Effect on the Structure, Morphological and Optical Properties of CuO/Sapphire Thin Films Prepared by Pulsed Laser deposition
...Show More Authors

This paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased.  The FTIR spec

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Laser Irradiation Effect on The Optical Properties of CoO<sub>2</sub>Thin Films deposited via Semi-Computerized Spraying System
...Show More Authors
Abstract<p>In this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO<sub>2</sub>) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe</p> ... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Synthesis and optical properties of CdS quantum dots via paraffin liquid and oleic acid
...Show More Authors

In this study, an easy, low-cost, green, and environmentally
friendlier reagents have been used to prepare CdS QDs, in chemical
reaction method by mixed different ratio of CdO and sulfur in
paraffin liquid as solvent and oleic acid as the reacting media in
different concentration to get the optimum condition of the reaction
to formation CdS QDs. The results give an indication that the
behavior is at small concentration of 4ml of the oleic acid is best
concentration which give CdS QDs of small about to 9.23 nm with
nano fiber configuration.

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Iraqi Journal Of Physics
The effect of rear earth doping CdS nanostructure on structural, optical and photoconductivity properties
...Show More Authors

Rare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
The Effect of Chlorine Concentration on the Optical Constants of SnS Thin Films
...Show More Authors

Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
The effect of annealing temperatures on the optical parameters of NiO0.99Cu0.01 thin films
...Show More Authors

NiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Annealing Temperature on the Structural and Optical Properties of The CdO Thin Films Prepared By Vacuum Evaporation Thermal Technique
...Show More Authors

      Cadmium Oxide films have been prepared by vacuum evaporation technique on a glass substrate at room temperature. Structural and optical properties of the films are studied at different annealing temperatures (375 and 475) ËšC, for the thickness (450) nm at one hour. The crystal structure of the samples was studied by X- ray diffraction. The highest value of the absorbance is equal to (78%) in the wavelength (530) nm, at annealing temperature (375) ËšC. The value of at a rate of deposition is (10) nm/s. The value of optical energy gap found is equal to (2.22) eV.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Comparison consequence of violet and red laser irradiation on the optical properties of cobalt dioxide (CoO2) thin films prepared via (SCSPT)
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Aip Conference Proceedings
Consequence of violet laser irradiation on the optical properties of mawsoniteCu6Fe2SnS8 [CFTS] thin films deposited via semi-computerized spray pyrolysis technique
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Annealing Temperatures on the Structural and Optical Properties of ZnO and ZnO:Al Thin Films Prepared By Thermal Evaporation Technique
...Show More Authors

 We studied the changing of structural and optical properties of pure and Aluminum-doped ZnO thin films prepared by thermal evaporation technique on glass substrates at thickness (800±50)nm with changing of annealing temperatures ( 200,250,300 )℃ for one hour. The investigation of (XRD) indicates that the pure and doped ZnO thin films were polycrystalline of a hexagonal wurtzite structure with preferred orientation along (002) plane. The grain size was decreased with doping before annealing, but after annealing the grain size is increasing with the increase of annealing temperature for pure film whereas for the doped films with ratios 1 %, 2 % we found that the grain size is larger than that before annealing. The grain size

... Show More
View Publication Preview PDF