Preferred Language
Articles
/
bsj-5517
Multifactor Algorithm for Test Case Selection and Ordering
...Show More Authors

Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls short. The current research is motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing stable and coverage efficacious test cases at an earlier phase.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Openness and the Degree of Impact on Engagement Learner Department of Architecture Case Study
...Show More Authors

        This paper concerns with openness concept in contemporary learning environment, which ranges from physical characters to its relation with learning efficiency and its output. Previous literatures differ to clear the effect of openness on the engagement between learner within themselves, and with this kind of spaces. Engagement means: active participation, the ability of making dialogue, self-reflection and the ability to explore and communicate with them and
within learning space. Research roblem was: The lack of knowledge about the effect of Openness on learner engagement with learning spaces. The two concepts were applied on three types of learning spaces in the Department of the Architectu

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2025
Journal Name
Alqalam Journal Of Medical And Applied Sciences
Atypical Presentation of Fibroepithelioma of Pinkus: A Case Report and Review of the Literature
...Show More Authors

Fibroepithelioma of Pinkus (FEP) is a slowly growing, low-grade malignant tumor with very low metastatic potential that is considered a distinct variant of basal cell carcinoma (BCC). It usually manifests as sessile or polypoidal lesions on the trunk of middle-aged patients. However, it may present in younger age groups, even in children. In this case, we present a rare case of FEP atypically presenting as a scaly plaque on the lower back for several years in an elderly female who was eventually diagnosed by excisional biopsy and histopathology.

View Publication
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
...Show More Authors

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different

... Show More
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
A Modified Strength Pareto Evolutionary Algorithm 2 based Environmental /Economic Power Dispatch
...Show More Authors

A Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 15 2003
Journal Name
كلية الترا ث الجامعة
Estimating an Exponentiated Expanded Power Function Distribution Using an Artificial Intelligence Algorithm
...Show More Authors

The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.

Publication Date
Wed May 09 2018
Journal Name
International Journal Of Advanced Computer Science And Applications
New Techniques to Enhance Data Deduplication using Content based-TTTD Chunking Algorithm
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Dual Stages of Speech Enhancement Algorithm Based on Super Gaussian Speech Models
...Show More Authors

Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Selection of the initial value of the time series generating the first-order self-regression model in simulation modeAnd their impact on the accuracy of the model
...Show More Authors

In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method  and the least squares method and that using the method of simulation model  first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.

                  

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Iv. International Rimar Congress Of Pure, Applied Sciences
A New Intrusion Detection Approach Based on RNA Encoding and K-Means Clustering Algorithm Using KDD-Cup99 Dataset
...Show More Authors

Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the dis

... Show More
Preview PDF