Preferred Language
Articles
/
bsj-5517
Multifactor Algorithm for Test Case Selection and Ordering
...Show More Authors

Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls short. The current research is motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing stable and coverage efficacious test cases at an earlier phase.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 06 2015
Journal Name
16th Conference In Natural Science And Mathematics
Efficient digital Image filtering method based on fuzzy algorithm
...Show More Authors

Recently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse

... Show More
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conference Proceedings
Developing a lightweight cryptographic algorithm based on DNA computing
...Show More Authors

This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of

... Show More
Crossref (7)
Crossref
Publication Date
Wed Sep 15 2021
Journal Name
2021 International Conference On Computing And Communications Applications And Technologies (i3cat)
Parallel Hybrid String Matching Algorithm Using CUDA API Function
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Anemia Blood Cell localization Using Modified K- Means Algorithm
...Show More Authors

View Publication
Publication Date
Wed Mar 23 2011
Journal Name
Ibn Al- Haitham J. For Pure & Appl. Sci.
Image Compression Using Proposed Enhanced Run Length Encoding Algorithm
...Show More Authors

In this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm.

Preview PDF
Publication Date
Thu Apr 25 2019
Journal Name
Engineering And Technology Journal
Improvement of Harris Algorithm Based on Gaussian Scale Space
...Show More Authors

Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Enforcing Wiener Filter in the Iterative Blind Restoration Algorithm
...Show More Authors

A new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the
psf environments

View Publication Preview PDF
Publication Date
Fri Sep 24 2021
Journal Name
Proceedings Of Sixth International Congress On Information And Communication Technology
Minimizing Costs of Transportation Problems Using the Genetic Algorithm
...Show More Authors

View Publication
Scopus (16)
Crossref (15)
Scopus Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Iop Conference Series: Earth And Environmental Science
The Effect of Urban Form on Temperature for Hot Arid Zones. The Case Study of Baghdad, Iraq
...Show More Authors

The research aims to determine optimal urban planning and design indicators of the urban clusters form in hot arid zones through studying of three urban areas in Baghdad, analyzing their urban indicators which include floor area ratio (FAR), urban clusters height, building density or land coverage, green areas, paved areas, shading ratio and how they affect urban temperature. The research reached the conclusion that air outdoor temperature on urban areas affected primarily by shadows casted on the ground, the effect of shaded area equals (5) times the effect of paved areas and (3.7) times the effect of green areas, this means that increasing urban clusters height in hot arid zones could minimize air outdoor temperature, building

... Show More
View Publication
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref