Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls short. The current research is motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing stable and coverage efficacious test cases at an earlier phase.
For a given loading, the stiffness of a plate or shell structure can be increased significantly by the addition of ribs or stiffeners. Hitherto, the optimization techniques are mainly on the sizing of the ribs. The more important issue of identifying the optimum location of the ribs has received little attention. In this investigation, finite element analysis has been achieved for the determination of the optimum locations of the ribs for a given set of design constraints. In the conclusion, the author underlines the optimum positions of the ribs or stiffeners which give the best results.
Linguistic research according to modern curricula:
It is one of the important matters that occupy the ideas of those concerned with linguistic studies, whether Arabic or otherwise. Recent years have witnessed the advancement of this methodological approach, and books and studies in Arabic have been written on important, multifaceted issues, of grammatical and linguistic origins, and their balance with new developments and ideas attracted mostly from Western studies.
The comparative approach - as they call it - is one of the modern approaches that is based on balancing a language with other sisters belonging to its family, to reach similarities and differences between them, and to know the c
This research is devoted to design and implement a Supervisory Control and Data Acquisition system (SCADA) for monitoring and controlling the corrosion of a carbon steel pipe buried in soil. A smart technique equipped with a microcontroller, a collection of sensors and a communication system was applied to monitor and control the operation of an ICCP process for a carbon steel pipe. The integration of the built hardware, LabVIEW graphical programming and PC interface produces an effective SCADA system for two types of control namely: a Proportional Integral Derivative (PID) that supports a closed loop, and a traditional open loop control. Through this work, under environmental temperature of 30°C, an evaluation and comparison were done for
... Show MoreIn the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show MorePresents here in the results of comparison between the theoretical equation stated by Huang and Menq and laboratory model tests used to study the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include depth of first layer of reinforcement, vertical spacing of reinforcement layers, number of reinforcement layers and types of reinforcement layers The results show that the theoretical equation can be used to estimate the bearing capacity of loose sand.
Samples of Iraqi bentonitic sediments, representing local montmorillonite brought from Traifawi region near the Syrian border. Mineralogical the samples were characterized as low grade of Ca-smectite, particle size, chemical analysis, XRD, and BET surface area analyses of the samples were carried out to examine the structure of bentonite before and after acid activation. The goal is to prepare a bleaching earth for edible oil production. Iraqi Bentonite was beneficiated and activated by series of physical and chemical steps, using 4N & 6N concentration of hydrochloric acid and at a temperature of 70-80 ° C. Surface area and pore volume of the samples were determined to assess the bleaching power
Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show More