Zerumbone is a well-known compound having anti-cancer, anti-ulcer, anti-inflammatory and anti-hyperglycemic effects. During its use for the disease treatment, the membrane of erythrocyte can be affected by consumption of this bioactive compound. The current study was the first report of investigation of the hemolytic activities on human erythrocytes and cytotoxic profile of zerumbone. The toxicity of zerumbone on human erythrocytes was determined by in vitro hemolytic assay. Brine shrimp lethality assay was used to evaluate the cytotoxic effect of zerumbone at concentrations 10, 100 and 1000 μg/mL. The human erythrocyte test showed no significant toxicity at low concentrations, whereas hemolytic effect was amplified up to 17.5 % at the highest concentration. The half lethal concentration (LC50) value of zerumbone against brine shrimp was less than 1000 µg /mL (LC50=190 µg/ml) showing the significant toxic nature of this compound. These results provide a baseline in terms of the toxicity of therapeutic formulations from this compound to membrane erythrocytes with a great attention to the highest concentrations, which paves promise for drug development.
The objective of this work was to determine and compare the physiological changes in some: blood components (packed cell volume and hemoglobin) and plasma biochemical parameters (glucose, total protein, albumin, cholesterol and triglycerides) under 3 day of different types of stress: water deprivation, starvation, overcrowding and handling stress. Twenty five male Wister rats weighted 100-120 gm, were divided randomly into five groups: control, water deprivation, starvation, overcrowding and handling stress. On the third day of stress the animals anesthetized for blood collection; the results of blood component revealed a significant increase in PCV and a significant decrease in Hb of water deprivation group and starva
... Show MoreThis research studies the effect of adding micro, nano and hybrid by ratio (1:1) of (Al2O3,TiO2) to epoxy resin on thermal conductivity before and after immersion in HCl acid for (14 day) with normality (0.3 N) at weight fraction (0.02, 0.04, 0.06, 0.08) and thickness (6mm). The results of thermal conductivity reveled that epoxy reinforced by (Al2O3) and mixture (TiO2+Al2O3) increases with increasing the weight fraction, but the thermal conductivity (k) a values for micro and Nano (TiO2) decrease with increasing the weight fraction of reinforced, while the immersion in acidic solution (HCl) that the (k) values after immersion more than the value in before immersion.
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
New nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreThis research aims to study the effect of microwave furnace heat on the mechanical properties and fatigue life of aluminum alloy (AA 2024-T3). Four conditions were used inside microwave furnace (specimens subjected to heat as dry for 30 and 60min. and specimens subjected to heat as wet (water) for 30 and 60 min.), and compared all results with original alloy (AA 2024-T3). Tensile, fatigue, hardness and surface roughness tests were used in this investigation. It is found that hardness of dry conditions is higher than wet conditions and it increases with increasing of time duration inside microwave furnace for dry and wet conditions. Also, tensile strength has the same behavior of hardness, but it increases with decreasing
... Show MoreBackground: Occupational exposure to hazardous drugs occurs in all aspects of anticancer drug handling. Proper recommendations and guidelines should be applied to control and reduce exposure. Objective: To assess pharmacists' knowledge and practice regarding the safe handling of anticancer drugs. Methods: A cross-sectional study was conducted at seven major hospitals in Baghdad City, Iraq, from December 2023 to February 2024. A pre-designed questionnaire was given to pharmacists who handled anticancer drugs in chemotherapy units. The questionnaire comprises sociodemographic data, knowledge of the safe handling of cytotoxic drugs and thoughts about exposure and risk, practices for safely handling cytotoxic drugs, and challenges for s
... Show MoreThe current study examines the combined impacts of ultrasonic waves and nano silica (NS) on reducing the viscosity Sharqy Baghdad heavy crude oil with an API gravity of 20.32. NS of an average particle size of 59.93 nm and 563.23 m²/g surface area were produced utilizing the sol-gel technique from Iraqi sand. The XRD analysis indicates the existence of an amorphous silica, the SEM analysis showed that NS tends to agglomerate, and the FTIR spectra exhibited the presence of siloxane and silanol groups. In addition, the TGA analysis demonstrated a total weight loss of 15.62%, validating the thermal stability of the NS. The experiments included a study of the impact of ultrasonic power, exposure time, duty cycle, temperature, and the c
... Show MoreThis work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.
The r
... Show MoreThe present paper deals with studying the effect of electrical discharge machining (EDM) and shot blast peening parameters on work piece fatigue lives using copper and graphite electrodes. Response surface methodology (RSM) and the design of experiment (DOE) were used to plan and design the experimental work matrices for two EDM groups of experiments using kerosene dielectric alone, while the second was treated by the shot blast peening processes after EDM machining. To verify the experimental results, the analysis of variance (ANOVA) was used to predict the EDM models for high carbon high chromium AISI D2 die steel. The work piece fatigue lives in terms of safety factors after EDM models were developed by FEM using ANSY
... Show MoreVitrifications process one of the important methods to immobilize nuclear waste. In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the cry
... Show More