This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB), and Support Vector Machine (SVM) techniques. CART gives clear results with high accuracy between the six supervised algorithms. It is worth noting that the preprocessing steps take remarkable efforts to handle this type of data, since its pure data set has so many null values of a ratio 94.8%, then it becomes 0% after achieving the preprocessing steps. Then, in order to apply CART algorithm, several determined tests were assumed as classes. The decision to select the tests which had been assumed as classes were depending on their acquired accuracy. Consequently, enabling the physicians to trace and connect the tests result with each other, which extends its impact on patients’ health.
This paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreDue to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
The distortion, which occurs to the image often affects the existing amount of information, weakens its sharpness, decreases its contrast, thus leads to overlapping details of the various regions, and decreases image resolution. Test images are used to determine the image quality and ability of different visual systems, as we depended in our study on test image, half black and half white. Contrast was studied in the petition so as to propose several new methods for different contrasts in the edge of images where the results of technical differences would identify contrast image under different lighting conditions.
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreMost companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak
... Show MoreThe political participation of the Iraqi woman, gains a big importance equivalent to its role in all other fields. Therefore , it represents a higher value in the democratic orientation in addition to the importance of rising the reality of the woman specifically in the fields that are considered as a scale of the human development like the income, health, and education . The weakness of womenʹs political participation, is something that can't be ignored or neglected if we are looking forward to the rising of the country᾽s reality and achieving the required development in its all aspects. The woman is half of society or more than that due to the burden of raising the generations tasks. This can be achieved by taking part in th
... Show MoreThis research dealt eith the effect of wars experienced bythe Iraqi people in the abroad Iraq women novels between 2003 – 2010, where this issye dominated on Iraqi women novels at this stage until it became the main subject that events revolved aroud in the novels of this stage.
The research also highlighted on the impact of continuous tough wars in human life and psyche, especially in the lives of women – and this is the privacy of feminist novel – where the Iraqi women novels focused on the impact of war on psychological of women and what it caused of misfortunes as women. Iraqi women have suffered from the bitterness of the loss caused by war as – any loss – a natural of her – the loss of father, son, husband, brother a