A spectrophotometric method has been proposed for the determination of two drugs containing phenol group [phenylephrine hydrochloride (PHP) and salbutamol sulphate (SLB)] in pharmaceutical dosage forms. The method is based on the diazotization reaction of metoclopramide hydrochloride (MCP) and coupling of the diazotized reagent with drugs in alkaline medium to give intense orange colored product (?max at 470 nm for each of PHP and SLB). Variable parameters such as temperature, reaction time and concentration of the reactants have been analyzed and optimized. Under the proposed optimum condition, Beer’s law was obeyed in the concentration range of 1-32 and 1-14 ?g mL-1 for PHP and SLB, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for each of PHP and SLB were 0.60, 0.52 ?g mL-1 and 2.02, 1.72 ?g mL-1, respectively. No interference was observed from common excipients present in pharmaceutical preparations. The good correlation coefficients and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical preparations, which was compared statistically with reference methods by means of t- test and F- test and were found not to differ significantly at 95% confidence level. The procedure was characterized by its simplicity with accuracy and precision.
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria