Water scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research work to use some natural minerals as zeolite, bentonite and montmorillonite to adsorb cadmium element from polluted water. Various concentrations of cadmium in solutions 10, 30 and 50 ppm were treated with three different ratios of each mineral; 1, 3 and 5% (W/V). The obtained results proved that increasing the ratio of amendments to 5% increased Cd adsorption from solution particularly at 50ppm Cd. Zeolite obtained the highest ratio of adsorption (47.90 ppm), followed by montmorillonite (44.99 ppm) and the lowest was bentonite (38.97 ppm). Therefore, it can be recommended that addition of zeolite is the most favorable material to remove Cd element from polluted water.
Permanent magnets of different intensities were used to investigate the effect of a magnetic field in the process of preventing deposits of calcium carbonate. The magnets were fixed on the water line from the tap outside. Then heating a sample of this water in flasks and measuring the amount of sediment in a manner weighted differences. These experiments comprise to the change of the velocity of water flow, which amounted to (0.5, 0.75, 1) m/sec through the magnetic fields that are of magnetic strength (2200, 6000, 9250, 11000) Gauss, and conduct measurements, tests and compare them with those obtained from the use of ordinary water.The results showed the effectiveness of magnetic treatment in reducing the rate of deposition of calcium carb
... Show MoreThe study examined the assessment of raw water and drinking water projects of Diyala Governorate for the year 2017, amounting to (24) projects, The average per capita supply of potable water (0.396 m3 / day/person), which is less than the global standard for the average per capita of drinking water, and constitute water rumors within the network of water transport in the province (3%), and the water of raw and drinking value within the limits allowed to be used by Iraq and the global indicators of {Total acidity, alkaline, acidic function, chlorides, magnesium, Electrical conductivity, total soluble salts, sodium, potassium, sulfates, turbidity other than (raw water)}. While the index of calcium only a value higher than the limits
... Show MoreA new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.
study was conducted on a stretch of Tigris river crossing Baghdad city to determine the concentration of some chlorophenols pollutants. Aqueous samples were preliminary enriched about 500 times and the chlorophenols have determined using high performance liquid chromatography HPLC. Limits of detection LOD were (0.007–0.012 mg L-1), relative standard deviations RSD% were 2.4%–5.59% and relative recoveries were 51.06%– 104.07%. The existence of chlorophenols in Tigris river was in the range 0.023–4.596 mg L-1. The developed method suggested in this study can be applied for routine analysis and monitoring of chlorinated phenols in environmental aqueous samples.
A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show More