In this study, hexadecyltrimethylammonium bromide (HDMAB) - bentonite was synthesized by placing alkylammonium cation onto bentonite. Adsorption of textile dye such as direct Yellow 50 on natural bentonite and HDMAB -bentonite was investigated. The effects of pH, contact time,dosage clay and temperature were investigated experimentally .The Langmuir and Freundlish isotherms equations were applied to the data and values of parameters of these isotherm equations were evaluated. The study indicated that using 0.2 g of HDMAB (hexadecyltrimethylammonium bromide) lead to increase the percentage removal(R%) from 78% for pure bentonite to 99 %. The optimum pH value for the adsorption experiments was found to be pH=3 and therefore all the experiments were carried out at this pH value. The pseudo-second-order kinetic model agrees very well with the experimental results.Different thermodynamic parameters such as Gibb’s free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. The thermodynamic analyses of the dye adsorption on organoclay indicated that the system was endothermic in nature .
Experimental investigations had been done in this study to demonstrate the effect of natural particles used as a reinforcement material to unsaturated polyester resin. The tensile test and water absorption were investigated according to (ASTM D638) and (ASTM D570), respectively. The influence of sunflower husk and pomegranate husk particles, used as a reinforcement material, on the tensile strength, Young's modulus and water absorption with different weight fraction (3%, 7% and 10%) and particle grain size (50µm, 100 µm and 150 µm), has been investigated. The water absorption of polymer composites was studied by measuring the specimen weight before and after immersion in water for one hundred days. In the experiments of tensile test,
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
In this study, gamma-ray spectrometry with an HPGe detector was used to measure the specific activity concentrations of 226Ra, 232Th, and 40K in soil samples collected from IT1 oil reservoirs in Kirkuk city, northeast Iraq. The “spectral line Gp” gamma analysis software package was used to analyze the spectral data. 226Ra specific activity varies from 9 0.34 Bq.kg-1 to 17 0.47 Bq.kg-1. 232Th specific activity varies from 6.2 0.08 Bq.kg-1 to 18 0.2 Bq.kg-1. 40K specific activity varies from 25 0.19 Bq.kg-1 to 118 0.41 Bq.kg-1. The radiological hazard due to the radiation emitted from natural r
... Show MoreKE Sharquie, AA Noaimi, AG Al-Ghazzi, Journal of Dermatology & Dermatologic Surgery, 2015 - Cited by 19
The corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show MoreThe corrosion behavior of carbon steel at different Temperatures and in water containing different sodium chloride
concentrations under 3 bar pressure has been investigated using weight loss method . The carbon steel specimens were
immersed in water containing (100,400,700,1000PPM) of NaCl solution and under temperature was increased from
(90-120ºC) under pressures of 3 bar. The results of this investigation indicated that corrosion rate increased with NaCl
concentrations and Temperature.