Preferred Language
Articles
/
bsj-5309
An Evolutionary Algorithm for Solving Academic Courses Timetable Scheduling Problem
...Show More Authors

Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating optimal timetable schedules with different copies by increasing the probability of giving the best schedule for each stage in the campus with the ability to replace the timetable when needed. The Evolutionary Algorithm (EA) utilized in this paper is the Genetic Algorithm (GA) which is a common multi-solution metaheuristic search based on the evolutionary population that can be applied to solve complex combinatorial problems like timetabling problems. In this work, all inputs: courses, teachers, and time acted by one array to achieve local search and combined this acting of the timetable by using the heuristic crossover to ensure that the essential conditions are not broken. The result of this work is a flexible scheduling system, which shows the diversity of all possible timetables that can be created depending on user conditions and needs.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2012
Journal Name
Journal Of Educational And Psychological Researches
The Psychological status of and the feeling of loneliness of the trainees (newly released Detainees) participating the training and rehabilitation courses
...Show More Authors

The research aims to understand the psychological status of and the feeling of loneliness of the trainees (recently released detainees) participating in the training and rehabilitation courses held in the Technical College - Baghdad. The study was conducted on a specimen of (23) trainees. An open questionnaire was adopted which included one question that was ( What was your feeling psychologically and socially before taking part in the training course?) , also the feeling of  loneliness Scale , designed by ( Russel,Peplau, Cutrona /University of California Los Angeles ) was implemented after the courses .

 

  &

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Arabian Journal Of Geosciences
Effect of well scheduling and pattern on project development management in unconventional tight gas reservoirs
...Show More Authors

The advancements in horizontal drilling combined with hydraulic fracturing have been historically proven as the most viable technologies in the exploitation of unconventional resources (e.g., shale and tight gas reservoirs). However, the number of fractures, well timing, and arrangement pattern can have a significant impact on the project economy. Therefore, such design and operating parameters need to be efficiently optimized for obtaining the best production performance from unconventional gas reservoirs. In this study, the process of selecting the optimal number of fractures was conducted on a section of a tight gas reservoir model (based on data from the Whicher Range (WR) tight gas field in Western Australia). Then, the optimal number

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial
...Show More Authors

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Creative skills in solving environmental problems among kindergarten children
...Show More Authors

Acquires this research importance of addressing the subject (environmental problems) with
age group task, a category that children pre-school, and also reflected the importance of
research, because the (environmental problems) constitute a major threat to the continuation
of human life, particularly the children, so the environment is Bmchkladtha within
kindergarten programs represent the basis of a hub of learning where the axis, where the
kindergarten took into account included in the programs in order to help the development of
environmental awareness among children and get them used to the sound practices and
behaviors since childhood .
The research also detected problem-solving skills creative with kids Riyad

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Solving the created ordinary differential equations from Lomax distribution
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
The Influence of NMI against Modularity in Community Detection Problem: A Case Study for Unsigned and Signed Networks
...Show More Authors

Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Apr 09 2021
Journal Name
Education And Information Technologies
Evaluating the use of informational technologies by students of healthcare colleges for academic purposes over a five-year period
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Oct 07 2021
Journal Name
مجلة لارك للفلسفة واللسانيات والعلوم الاجتماعية
معايير النخبة الاكاديمية العراقية في التعرض للقنوات الفضائية الاخبارية الاجنبية الناطقة باللغة العربية
...Show More Authors

Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref