Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating optimal timetable schedules with different copies by increasing the probability of giving the best schedule for each stage in the campus with the ability to replace the timetable when needed. The Evolutionary Algorithm (EA) utilized in this paper is the Genetic Algorithm (GA) which is a common multi-solution metaheuristic search based on the evolutionary population that can be applied to solve complex combinatorial problems like timetabling problems. In this work, all inputs: courses, teachers, and time acted by one array to achieve local search and combined this acting of the timetable by using the heuristic crossover to ensure that the essential conditions are not broken. The result of this work is a flexible scheduling system, which shows the diversity of all possible timetables that can be created depending on user conditions and needs.
Autonomous systems are these systems which power themselves from the available ambient energies in addition to their duties. In the next few years, autonomous systems will pervade society and they will find their ways into different applications related to health, security, comfort and entertainment. Piezoelectric harvesters are possible energy converters which can be used to convert the available ambient vibration energy into electrical energy. In this contribution, an energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturi
... Show Moreملخص البحث باللغة الإنجليزية
The concept of the phenomenon of nuns: an analytical ideological study
Dr. Samia bint Yassin Al-Badri
Department of Islamic Doctrine & Contemporary Ideologies
College of Shariʿah & Islamic Studies
Qassim University
The study of concepts is one of the main pillars of doctrinal studies, in order to understand the formation of the concept, and to understand its contexts in religious sources, in order to be systematically criticized; So, this research came with the title:
The concept of the phenomenon of nuns, an analytical doctrinal study
The study concluded with resu
... Show MoreBOOK REVIEW
As COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
Inclination Of The Lumbosacral Angle In Normal Individuals: An Mri Study,GJRA - Global Journal For Research Analysis(GJRA) GJRA is a double reviewed monthly print journal that accepts research works. 36572+ Manuscript submission, 9855+ Research Paper Published, 100+ Articles from over 100 Countries
This study aims to study the political caricature and its indications in the Palestinian newspapers, to know its subjects, the active characters, the artistic styles, and the symbols the caricaturists use.
The study concluded that there is a variety of subjects that the political caricature handled in the studied newspapers and the degree of interest in every subject. The subjects related to the international subjects came first (% 24.5) and the other subjects came next (% 22.2).
The results showed the caricaturists relied on unnamed symbolic active characters that came first (% 62.3) and named symbolic characters (% 11.1). The positive characteristics of the Palestinian figures were higher than the negative ones, and the
... Show MoreCatalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro
... Show MoreLittoral and benthic invertebrates from Roundwood Reservoir System were sampled. Oligochaetes and molluscs were the dominant organisms in the littoral and benthic areas Trichopterans and chironomids were the most abundant insect groups. Scuba diving samples reinforced that view. Other groups of macroinvertebrates were poorly represented. Vertical and horizontal hauls of zooplankton revealed that there were twelve species of zooplankton present. Daphnia hyalina Leydig and Bosmina coregoni Baird were the two dominant species.
Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show More