The biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order to provide high-quality random, unpredictable, and non-regenerated keys, the chaotic map has been used in the proposed system. In the experiments, the NIST statistical analysis which includes ten statistical tests has been employed to check the randomness of the generated binary bits key. The obtained random cryptographic keys are successful in the tests of NIST, in addition to a considerable degree of aperiodicity.
This paper proposes a new strategy to enhance the performance and accuracy of the Spiral dynamic algorithm (SDA) for use in solving real-world problems by hybridizing the SDA with the Bacterial Foraging optimization algorithm (BFA). The dynamic step size of SDA makes it a useful exploitation approach. However, it has limited exploration throughout the diversification phase, which results in getting trapped at local optima. The optimal initialization position for the SDA algorithm has been determined with the help of the chemotactic strategy of the BFA optimization algorithm, which has been utilized to improve the exploration approach of the SDA. The proposed Hybrid Adaptive Spiral Dynamic Bacterial Foraging (HASDBF)
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreAbstract:
Typological analysis about the negation marker in different languages is one of the fields of research that has attracted much attention. In Persian language, this constituent has been analysed from different aspects. This study aimed to analyse different aspects of negation marker in the adjectives, the noun phrases and the verb phrases based on typological analysis. Many studies have been revealed that the negation in adjectives has shown lexically and morphologically. In the noun phrases, /hich/ has used as a negative marker necessarily marking the verb phrase as negative too. In the verb phrases, negation occurs morphologically by the addition of the prefix /n
... Show MoreA large number of natural or synthetic dyes have been removed from both national and international lists of permitted food colors because of their mutagenic or carcinogenic activity. Therefore, this study aimed to use the Random Amplified Polymorphic DNA-Based Polymerase Chain Reaction (RAPD-PCR) assay as a feasible method to evaluate the ability of some food colors as genotoxin-induced DNA damage and mutations. Lactiplantibacillus plantarum was used as a bioindicator to determine the genotoxic effects by RAPD-PCR using M13 primer after treatment with some synthetic dyes currently used as food color additives, including Sunset Yellow, Carmoisine, and Tartrazine. Besides qualitative analysis, the bioinformatic GelJ software was used for clus
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThe basic idea of the Main Outfall Drain, MOD, was to construct a main channel to collect saline drained water of the irrigation projects within central and southern parts of Iraq and discharge it down to the Arabian Gulf. The MOD has a navigation lock structures near Addalmage Lake at station 299.4km. This structure is designed to ensure navigation within the MOD. The water level difference upstream the cross regulator and the downstream conjugation structure is about 9m. This head difference can be used to generate electrical power by constricting a low head power plant. This study aimed to utilize the head difference in navigation lock structures for power generation. Different operation condition an
... Show MoreZnO organic hybrid junction (electroluminescence EL device) was fabricated using phase segregation method. ZnO-nanoparticle (NPs) was prepared as a colloidal by self–assembly method of Zinc acetate solution with KOH solution. Nanoparticle is employed to form organic-inorganic hybrid film and generate white light emission, while N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’-diamine (TPD) and polymethyl methacrylate (PMMA) are adopted as the organic matrices. ZnO NPs was used to fabricate TPD: PMMA: ZnO NPs hybrid junction device. The photoluminescence (PL) and electroluminescence (EL) spectra of the TPD: PMMA: ZnO NPs hybrid device provided a broad emission band covering entirely the visible spectrum (∼350-∼700
... Show MoreToday, the architecture field is witnessing a noticeable evolution regarding the used tools that the designer should invest in a peculiar way that is made available in architecture through the concept of synergy generally and algorithmic synergy specifically. The synergy is meant to study and analyze the cooperative behavior of complex systems and self-organizing systems that leads to different outputs referred to by the synergy as the (whole), which is bigger than the sum of parts and in architecture, it's translated as the architectural form. This point resulted in a need of a specific study regarding the concept of synergy that focuses on the cooperative, synergistic relations within the trilogy of (form, structure, and material) and
... Show More