Preferred Language
Articles
/
bsj-5246
Strong Subordination for E -valent Functions Involving the Operator Generalized Srivastava-Attiya
...Show More Authors

Some relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
On Generalized Leftly e ─ Core Transference
...Show More Authors

Richards in 1996 introduced the idea of leftly e ─ core transference by using many conditions, including that the difference between the colums (k) is greater than of weight. In this paper, we generalized this idea without the condition of Richards depending on the mathematical and computational solution.

View Publication Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
q-Difference Equation for the Operator E ̃(x,a;θ) and their Applications for the Polynomials h_n (a,b,x|q^(-1))
...Show More Authors

This paper concentrates on employing the -difference equations approach to prove another generating function, extended generating function, Rogers formula and Mehler’s formula for the polynomials , as well as thegenerating functions of Srivastava-Agarwal type. Furthermore, we establish links between the homogeneous -difference equations and transformation formulas.

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Sandwich Subordinations Imposed by New Generalized Koebe-Type Operator on Holomorphic Function Class
...Show More Authors

     In the complex field, special functions are closely related to geometric holomorphic functions. Koebe function is a notable contribution to the study of the geometric function theory (GFT), which is a univalent function. This sequel introduces a new class that includes a more general Koebe function which is holomorphic in a complex domain. The purpose of this work is to present a new operator correlated with GFT. A new generalized Koebe operator is proposed in terms of the convolution principle. This Koebe operator refers to the generality of a prominent differential operator, namely the Ruscheweyh operator. Theoretical investigations in this effort lead to a number of implementations in the subordination function theory. The ti

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions
...Show More Authors

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

View Publication Preview PDF
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Some Identities of 3-Prime Near-Rings Involving Jordan Ideals and Left Generalized Derivations
...Show More Authors

In the current paper, we study the structure of Jordan ideals of a 3-prime near-ring which satisfies some algebraic identities involving left generalized derivations and right centralizers. The limitations imposed in the hypothesis were justified by examples.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A certain Subclass of Meromorphically Multivalent Q-Starlike Functions Involving Higher-Order Q-Derivatives
...Show More Authors

          The authors introduced and addressed  several new subclasses  of the family of meromorphically multivalent -star-like functions in the punctured unit disk  in this study, which makes use of several higher order -derivatives. Many fascinating properties and characteristics are extracted systematically for each of these newly identified function classes. Distortion theorems and radius problems are among these characteristics and functions. A number of coefficient inequalities for functions belonging to the subclasses are studied, and discussed, as well as a suitable condition for them is set. The numerous results are presented in this study and the previous works on this

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
On A Certain Class of Meromorphic Multivalent Functions Defined by Fractional Calculus Operator
...Show More Authors

    In this work, we study a new class of meromorphicmultivalent functions, defined by fractional differ-integral operator.We obtain some geometricproperties, such ascoefficient inequality, growth and distortion bounds, convolution properties, integral representation, radii of starlikeness, convexity, extreme pointsproperties, weighted mean and arithmetic meanproperties.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Best Multiplier Approximation of Unbounded Periodic Functions in L_(p,∅_n ) (B),B=[0,2π] Using Discrete Linear Positive Operators
...Show More Authors

The purpose of this paper is to find the best multiplier approximation of unbounded functions in    –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Integral Transforms of New Subclass of Meromorphic Univalent Functions Defined by Linear Operator I
...Show More Authors

    New class A^* (a,c,k,β,α,γ,μ)  is introduced of meromorphic univalent functions with positive coefficient f(z)=â–¡(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.

View Publication Preview PDF
Crossref