Some relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical
... Show MoreThis paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreLet R be an associative ring with identity, and let M be a unital left R-module, M is called totally generalized *cofinitely supplemented module for short ( T G*CS), if every submodule of M is a Generalized *cofinitely supplemented ( G*CS ). In this paper we prove among the results under certain condition the factor module of T G*CS is T G*CS and the finite sum of T G*CS is T G*CS.
This research aims to present some results for conceptions of quasi -hyponormal operator defined on Hilbert space . Signified by the -operator, together with some significant characteristics of this operator and various theorems pertaining to this operator are discussed, as well as, we discussed the null space and range of these kinds of operators.
. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
In this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.