Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim of this unfortunate mental disorder. The data is collected from Twitter, one of the popular Social Networking Sites (SNS). The Tweets are then pre-processed and annotated manually. Finally, various machine learning and ensemble methods are used to automatically distinguish Suicidal and Non-Suicidal tweets. This experimental study will help the researchers to know and understand how SNS are used by the people to express their distress related feelings and emotions. The study further confirmed that it is possible to analyse and differentiate these tweets using human coding and then replicate the accuracy by machine classification. However, the power of prediction for detecting genuine suicidality is not confirmed yet, and this study does not directly communicate and intervene the people having suicidal behaviour.
Background: Implantology is a fast growing area in dentistry. One of the most common issues encountered in dental implantation procedures is the lack of adequate preoperative planning. Conventional radiography may not be able to assess the true regional three-dimensional anatomical presentation. Multi Slice Computed Tomography provides data in 3-dimentional format offering information on craniofacial anatomy for diagnosis; this technology enables the virtual placement of implant in a 3-Dimensional model of the patient jaw (dental planning). Patients, Material and Methods: The sample consisted of (72) Iraqi patients indicated for dental implant (34 male and 38 female), age range between (20-70) years old. They were examined during a time p
... Show More<span lang="EN-US">Increase the in population and kindergarten number, especially in urban areas made it difficult to properly manage waste. Thus, this paper proposed a system dedicated to kindergartens to manage to dispose of waste, the system can be called smart garbage based on internet of things (SGI). To ensure a healthy environment and an intelligent waste in the kindergarten management system in an integrated manner and supported by the internet of things (IoT), we presented it in detail identification, the SGI system includes details like a display system, an automatic lid system, and a communication system. This system supplied capabilities to monitor the status of waste continuously and on IoT website can show the pe
... Show MoreBeen using a pv system program to determine the solar window for Baghdad city . the solar window for any location can be determine by deviating left and right from the geographical south as well as deviation according to the amount of tilt angle with the horizon for fixed panel so that will not change the average of solar radiation incident over the whole year and this lead to help in the process of installation of fixed solar panel without any effect on annual output .the range of solar window for Baghdad city between two angles ( -8 - +8 ) degrees left to right of the geographical south and tilt angle that allowed for the horizon range between angles (21- 30) degrees so that the amount of solar radiation that falling on the solar pan
... Show MoreIn this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show MoreEx-situ bioremediation of 2,4-D herbicide-contaminated soil was studied using a slurry bioreactor operate at aerobic conditions. The performance of the slurry bioreactor was tested for three types of soil (sand, sandy loam and clay) contaminated with different concentration of 2,4-D, 200,300and500mg/kg soil. Sewage sludge was used as an inexpensive source of microorganisms which is available in large quantities in wastewater treatment plants. The results show that all biodegradation experiments demonstrated a significant decreases in 2,4-D concentration in the tested soils. The degradation efficiency in the slurry bioreactor decreases as the initial concentration of 2,4-D in the soils increases.A 100 % removal was achieved at initial con
... Show MoreThis research was aimed to determine the petrophysical properties (porosity, permeability and fluid saturation) of a reservoir. Petrophysical properties of the Shuiaba Formation at Y field are determined from the interpretation of open hole log data of six wells. Depending on these properties, it is possible to divide the Shuiaba Formation which has thickness of a proximately 180-195m, into three lithological units: A is upper unit (thickness about 8 to 15 m) involving of moderately dolomitized limestones; B is a middle unit (thickness about 52 to 56 m) which is composed of dolomitic limestone, and C is lower unit ( >110 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
KE Sharquie, AA Noaimi, EA Al-Janabi…, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 13