Preferred Language
Articles
/
bsj-5245
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim of this unfortunate mental disorder. The data is collected from Twitter, one of the popular Social Networking Sites (SNS). The Tweets are then pre-processed and annotated manually. Finally, various machine learning and ensemble methods are used to automatically distinguish Suicidal and Non-Suicidal tweets. This experimental study will help the researchers to know and understand how SNS are used by the people to express their distress related feelings and emotions. The study further confirmed that it is possible to analyse and differentiate these tweets using human coding and then replicate the accuracy by machine classification. However, the power of prediction for detecting genuine suicidality is not confirmed yet, and this study does not directly communicate and intervene the people having suicidal behaviour.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

Crossref (10)
Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
A Semi-Supervised Machine Learning Approach Using K-Means Algorithm to Prevent Burst Header Packet Flooding Attack in Optical Burst Switching Network
...Show More Authors

Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 07 2023
Journal Name
Journal Of Educational And Psychological Researches
Problems Facing University Students in Distance Learning
...Show More Authors

The current study aims to examine the level of problems faced by university students in distance learning, in addition to identify the differences in these problems in terms of the availability of internet services, gender, college, GPA, interactions, academic cohort, and family economic status. The study sample consisted of (3172) students (57.3% females). The researchers developed a questionnaire with (32) items to measure distance learning problems in four areas: Psychological (9 items), academic (10 items), technological (7 items), and study environment (6 items). The responses are scored on a (5) point Likert Scale ranging from 1 (strongly disagree) to 5 (strongly agree). Means, standard deviations, and Multivariate Analysis of Vari

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Signals And Communication Technology
Survey on Twitter Sentiment Analysis: Architecture, Classifications, and Challenges
...Show More Authors

View Publication
Scopus (14)
Crossref (12)
Scopus Crossref
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jul 03 2011
Journal Name
Journal Of Educational And Psychological Researches
Effect of using the active learning in the achievement of third grade intermediate students in mathematics and them tendency towards the study of its
...Show More Authors

Current research aims to find out:

  1. Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
  2. Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.

In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:

  1. There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement

... Show More
View Publication Preview PDF
Publication Date
Wed May 01 2024
Journal Name
Scientific Visualization
Shadow Detection and Elimination for Robot and Machine Vision Applications
...Show More Authors

Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (57)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref