The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these calculations showed that the effect of increasing the values of the laser pulse power (25-250kW) led to decrease the absorption coefficient values by 58.3% and increase the electron temperature by 50.0% at duration pulse time 0.5ns and electron density ratio 0.1. Furthermore, the ratio of electron density increasing and pulse duration time led to increase the higher values of the electron temperature. The results of the calculations showed the effect of the laser power, the percentage of electron density, and the pulse duration for improving the electron temperature. It is possible to control the temperature of the electrons with one of the plasma parameters or the laser beam used, and that it gives a clear indication of researchers in this field to choose the optimal wavelength of the laser beam and electron density ratios for the plasma.
Background: Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease mediated by autoreactive T cells against myelin-basic proteins. Cytokines are suggested to play a role in the etiopathogenesis of the disease. Among these cytokines is interleukin-2 (IL-2). Aim of the study: To investigate the association between IL2+166 G/T single nucleotide polymorphism (SNP: rs2069763) and MS in Iraqi patients. Serum level of IL-2 was also detected. Anti-rubella IgG antibody was further determined in the sera of patients. Patients and methods: Eighty MS patients (28 males and 52 females; age mean ± SD: 39.2 ± 16.1 years) and 80 healthy control matched patients for age (32.15 ± 16.13 years) and gender (28 males and 52 females) were en
... Show MoreThe present study deals with the morphological and histological aspects of the forebrain(Cerebrum) in the Columba livia domestica (Gmelin, 1789) to identify the histoarchitecture of its layers. This bird' has a large head found as perpendicular to the longitudinal axis. The morphological results reveal that for brain (Cerebrum) pear shaped, its outer surface is smooth without folds or deep grooves. Cerebrum is made up of two regions, the Pallium and the Subpallium. The Cerebral cortex includes four layers of hyperpallium (Wulst) , Dorsolateral corticoid area (CDL), Hippocampus, Piriform cortex. The internal cortex of cerebrum consists of Dorsal Ventricle ridge which includes the mesopallium, nidopallium, and archospallium. All these reg
... Show MoreThere is currently a significantly larger concentration of toxins in our environment than there was in the past. This is mostly attributable to the expansion of modern industry. This investigation was conducted in order to investigate various haematological and biochemical changes in order to determine the effects of Cd on the liver and kidney. Because of its long biological half-life, it is considered hazardous to human health. The effect of sub-lethal doses (40, 80 and 120 mg\Kg) of Cadmium (Cd) on male mice were evaluated for 4 weeks, and analysis was done to estimate their biochemical parameters and antioxidant enzymes. The results showed that Cd-treated mice had considerably lower packed cell volume, red blood cells, and haemoglobin. W
... Show MoreThe mixed-spin ferrimagnetic Ising system consists of two-dimensional sublattices A and B with spin values and respectively .By used the mean-field approximation MFA of Ising model to find magnetism( ).In order to determined the best stabile magnetism , Gibbs free energy employ a variational method based on the Bogoliubov inequality .The ground-state (Phase diagram) structure of our system can easily be determined at , we find six phases with different spins values depend on the effect of a single-ion anisotropies .these lead to determined the second , first orders transition ,and the tricritical points as well as the compensation phenomenon .