In this paper, we introduce the concept of almost Quasi-Frobcnius fuzzy ring as a " " of Quasi-Frobenius ring. We give some properties about this concept with qoutient fuzzy ring. Also, we study the fuzzy external direct sum of fuzzy rings.
Ring theory is one of the influential branches of abstract algebra. In this field, many algebraic problems have been considered by mathematical researchers who are working in this field. However, some new concepts have been created and developed to present some algebraic structures with their properties. Rings with derivations have been studied fifty years ago, especially the relationships between the derivations and the structure of a ring. By using the notatin of derivation, many results have been obtained in the literature with different types of derivations. In this paper, the concept of the derivation theory of a ring has been considered. This study presented the definition of
Ring theory is one of the influ
... Show MoreLet R be a commutative ring with identity . In this paper we study the concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-Dedekind modules . Among the results that we obtain is the following : M is an essentially quasi-Dedekind module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each , Kerf ≤e M implies f = 0 .
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
Let R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.
The purpose of this paper is to investigate the concept of relative quasi-invertible submodules motivated by rational submodules and quasi-invertible submodules. We introduce several properties and characterizations to relative quasi-invertiblity. We further investigate conditions under which identification consider between rationality, essentiality and relative quasi-invertiblity. Finally, we consider quasiinvertiblity relative to certain classes of submodules
In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever is a Prime Ideal For proper submodule N of B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of prime module and quasi
... Show MoreSequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show MoreIn this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators