High-intensity laser-produced plasma has been extensively investigated in many studies. In this demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction, which opens up new discussions for new light source generation. Moreover, the characterizations of plasma have been improved through the interaction process of laser-plasma. Three types of laser were incorporated in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the plasma intensity increased from several thousands to several tens of thousands through the process of interaction of the Nd: YAG laser with the plasma. This increase in the intensity of the plasma as laser intensity increased occurs regardless of laser wavelength involved in the interaction or not. According to laser-plasma interaction, the so-called full width at half maximum FWHM of the highest peak in the plasma spectrum was broadened from 1.43 to 2.73. Considering the equation of plasma density computing, the plasma density was increased from 1.07× 1018 to 2.05× 1018 cm-3 with increasing FWHM. As a result of the interaction, the electron temperature of plasma was increased from 0.176 to 0.782 eV. It was also noticed that the position of the highest peak in the plasma spectrum depends on the interacted laser wavelength.
Siderophores are low molecular weight organic compounds produced by microorganisms growing under low iron concentration.In this study we describe the detection, production and extraction of siderophores secreted by Acinetobacter baumannii (Multiple-drug resistant ) pathogens. One hundered twenty Gram –negative non lactose fermenter bacilli isolates have been collected from three hospitals at Baghdad city over three months. Primary identification of these isolates is performed by standard diagnostic methods (biochemical tests and API 20 NE); 19 clinical isolates of A. baumannii are cultured on CHROMagar (highly selective medium for detection of MDR Acinetobacter) as well as diagnoses is documented by using Vitek 2 system. Isolates are exa
... Show MoreNew series of 2-mecapto benzoxazole derivatives (1-20) incorporated into fused to different nitrogen and suphur containing heterocyclic were prepared from 2-meracpto benzoxazole, when treated with hydrazine hydrate to afford 2-hydrazino benzoxazol (1). Compound (1) converted to a variety of pyridazinone andphthalazinone derivatives (2-4) by reaction with different carboxylic anhydride. Also, reaction of (1) with phenyl isothiocyanate and ethyl chloro acetate afforded 3-phenyl-1,3-thiazolidin-2,4-dione-2-(benzoxazole-2-yl-hydrazone) (6). Azomethines (7-10) were prepared through reaction of (1) with aromatic aldehyde, then (7, 8) converted to thaizolidinone derivatives (11, 12). Treatment of (1) with active methylene compounds afforded deriva
... Show MoreA microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/mi
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
This study delves into the design optimization of a hydropower harvesting system, exploring various parameters and their influence on system performance. By modifying the variables within the model to suit different flow conditions, a judiciously optimized design is attainable. Notably, the lift force generated is found to be intricately linked to the strategic interplay of the bluff body's location, cylinder dimensions, and flow velocity. The findings culminate in the establishment of empirical equations, one for lift force and another for displacement, based on the force equation. Many energy harvesting approaches hinge on the reciprocating motion inherent to the structural system. The methodology developed in this study emerges as a pot
... Show MoreDietary components and changes cause shifts in the gastrointestinal microbial ecology that can play a role in animal health and a wide range of diseases. However, most information about the microbial populations in the gut of horses has not been quantitative. The objective of this study was to characterize the fecal bacterial and its prevalence in healthy horses and diarrheal one in a period from September 2010 to July 2013. Out of 100 Fecal samples of horses (from farms in Al-furusyia club) in Baghdad were examined for microbial differentiation founded eighty percent of the fecal samples isolated from healthy horses. The most common pathogen found were Streptococcus spp. (33.7%), Escherichia coli (20.9%), , and Staphylococcus aureus (9.2
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.