The article describes a certain computation method of -arcs to construct the number of distinct -arcs in for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each construction especially for large value of and then reduce the running time of the calculation. Therefore, it allows to decrease the memory storage for the calculation processes. This method’s effectiveness evaluation is confirmed by the results of the calculation where a largest size of complete -arc is constructed. This research’s calculation results develop the strategy of the computational approaches to investigate big sizes of arcs in where it put more attention to the study of the number of the inequivalent classes of -secants of -arcs in which is an interesting aspect. Consequently, it can be used to establish a large value of .
In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
Abstract
Electric arc furnace applications in industry are related to position system of its pole, up and down of pole. The pole should be set the certain gap. These setting are needed to calibrate. It is done manually. In this research will proposed smart hydraulic to make this pole works as intelligent using proportional directional control valve. The output of this research will develop and improve the working of the electric arc furnace. This research requires study and design of the system to achieve the purpose and representation using Automation Studio software (AS), in addition to mathematically analyzed and where they were building a laboratory device similar to the design and conduct experiments to stud
... Show MoreThe paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
The research aims to shed light on the amount of proceeds annual tax for each of the way the contract total and percentage of completion method - see which is better - as well as the current problems arising from the application method of the contract in full in settling accounts tax - to identify problems - related to postpone settling accounts tax in accordance with the way the contract fully and determine the advantages and disadvantages of each of the methods through practical application , and then use the results as inputs to help in the decision to confirm the continuation of the GCT using a full decade in settling accounts tax for long-term construction contracts or forgo them.
Were the result of research the existence of
... Show MoreFor many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreIn this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
Our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .