A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.
Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreThe technical of Flame Thermal Spray had been used in producing a cermet
composite based on powders of stabilized zirconium oxide containing amount of
Yatteria oxide (ZrO2- 8Y2O3) reiforced by minerals powders of bonding material
(Ni-Cr- Al- Y) in different rates of additions (25, 35, 50) on stainless steel base type
(304) after preparing it by the way of Grit Blasting.
Before heat treatment, the coated cermet layers were characterized for porosity
and electric resistivity. All samples were heat treated in vacuum furnace at different
temperature and times. The physical tests had been operated after heat treatment
and gave best results especially porosity, which found to be reduced dramatically
and producing hig
In this research study the effect of fish on the properties optical films thickness 1200-1800 and calculated energy gap Basra direct transport permitted and forbidden to membranes and urged decreasing values ??of Optical Energy Gap increase fish included accounts optical also calculate the constants visual as factories winding down and the refractive index and reflectivity membranes also by real part and imaginarythe dielectric constant
Flexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show MoreThis work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (