In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
A method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreAbstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show MoreFriction stir spot welding (FSSW) is a relatively new welding process that may have significant advantages compared to the fusion processes as follows joining of conventionally non-fusion weldable alloys, reduced distortion and improved mechanical properties of weldable alloys joints due to the pure solidstate joining of metals. In this paper, a three-dimensional model based on finite element analysis is used to study the thermal history in the spot-welding of aluminum alloy 2024. The model take place the thermomechanical property on the process of the welded metals. The thermal history and the evolution results with numerical model at the measured point in the friction stirred spot weld have a good matching, then the prediction of the t
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show More This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show More