Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage and Selection Operator (Lasso), and Tikhonov Regularization (Ridge). The simulation studiesshow that the performance of our method is better than the othersaccording to the error and the time complexity. Thesemethodsare applied to a real dataset, which is called Rock StrengthDataset.The new approach implemented using the Gibbs sampler is more powerful and effective than other approaches.All the statistical computations conducted for this paper are done using R version 4.0.3 on a single processor computer.
This study aims at finding out the sentimental smartness of the kindergarten children
and its relationship with some variables.
1- The level of the sentimental smartness of the kindergarten children.
2- Investigating the Zero hypothesis in that there are no significant statistical differences in
the sentimental smartness between the kindergarten children according to the sex variables
(males and females).
Some statistical tools have been used in order to arrive at the results that verify the
hypotheses of this study. The researcher uses (1) the distinctive power between two
distinctive groups; (2) the relationship between the item and the total degree (Pearson
correlation factor); and (3) Elfakronbach formula t
In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreSpeech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
The purpose of this research is to test the ability of the true strength index To time and manage trading in the financial market to select the best stocks and achieve a higher return than the Simple buy and hold strategy. And To achieve the objectives of the research, it relied on the main hypothesis, which is By using the True Strength Index to manage trading decisions buying and selling, can be achieved higher returns than the buy and hold strategy . The research community has been identified with all stocks listed on the Iraq Stock Exchange. Implementing the financial research tests requires selecting a sample from the research community that fulfills the test requirements according to a number of conditions So (38) companies we
... Show MoreThis paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow rat
... Show MoreThis paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe Arab economy suffers from many structural imbalances problems which are getting complicated by the appearance of the world economic variables.
This change held risky challenges for the Arab economies in the light of unsuitable regional and international conditions. Since that it has been very essential for the Arab experts, especially those related to economy and politics, to face those new challenges or, at least, adapt with them believing that they can have both positive and negative impacts on the Arab economy.
This study has acquired its importance in the light of the critical levels the Arab economy reached out of the world economic variables, resulting in long-term
... Show More