Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage and Selection Operator (Lasso), and Tikhonov Regularization (Ridge). The simulation studiesshow that the performance of our method is better than the othersaccording to the error and the time complexity. Thesemethodsare applied to a real dataset, which is called Rock StrengthDataset.The new approach implemented using the Gibbs sampler is more powerful and effective than other approaches.All the statistical computations conducted for this paper are done using R version 4.0.3 on a single processor computer.
This paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreThis research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreAbstract
This study aims at identifying the impact of the application of IFRS 15 "Revenue from contracts with customers on the quality of financial reporting, through application to faculty members in the accounting departments of Iraqi universities and auditors. The problem of the study was the multiplicity of accounting rules and standards Which deals with the issues of revenue recognition , as well as the lack of consistency of most of them with the common framework of financial accounting, which results in low quality of financial reporting in the current financial statements, where the formulation of one hypothesis was the lack of relationship of significant significance The application of IFRS 15 "Recognition of rev
... Show MoreThe surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe study aims to achieve several objectives, including follow-up scientific developments and transformations in the modern concepts of the Holistic Manufacturing System for the purpose of identifying the methods of switching to the entrances of artificial intelligence, and clarifying the mechanism of operation of the genetic algorithm under the Holonic Manufacturing System, to benefit from the advantages of systems and to achieve the maximum savings in time and cost of machines Using the Holistic Manufacturing System method and the Genetic algorithm, which allows for optimal maintenance time and minimizing the total cost, which in turn enables the workers of these machines to control the vacations in th
... Show MoreAbstract
The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin
... Show MoreRoller-Compacted Concrete (RCC) is a zero-slump concrete, with no forms, no reinforcing steel, no finishing and is wet enough to support compaction by vibratory rollers. Because the effectiveness of curing on properties and durability, the primary scope of this research is to study the effect of various curing methods (air curing, emulsified asphalt(flan coat) curing, 7 days water curing and permanent water curing) and different porcelanite (local material used as an Internal Curing agent) replacement percentages (volumetric replacement) of fine aggregate on some properties of RCC and to explore the possibility of introducing more practical RCC for road pavement with minimum requirement of curing. Cubes specimens were sawed from the slab
... Show More